Advertisement

International Journal of Hematology

, Volume 108, Issue 2, pp 213–217 | Cite as

Clonal dynamics in a case of acute monoblastic leukemia that later developed myeloproliferative neoplasm

  • Shinya Sato
  • Hidehiro Itonaga
  • Masataka Taguchi
  • Yasushi Sawayama
  • Daisuke Imanishi
  • Hideki Tsushima
  • Tomoko Hata
  • Yukiyoshi Moriuchi
  • Hiroyuki Mishima
  • Akira Kinoshita
  • Koh-ichiro Yoshiura
  • Yasushi Miyazaki
Case Report

Abstract

In acute myeloid leukemia (AML), patients may harbor pre-leukemic hematopoietic stem cells (HSCs) containing some, but not all, of the mutations observed in the leukemic cells. These pre-leukemic HSCs may survive induction chemotherapy and contribute to AML relapse by obtaining additional mutations. We report here an acute monoblastic leukemia (AMoL) patient who later developed an unclassifiable myeloproliferative neoplasm (MPN-U). Whole-exome sequencing and cluster analysis demonstrated the presence of three distinct major clones during the clinical course: (1) an AMoL clone with ASXL1, CBL, and NPM1 somatic mutations, likely associated with the pathogenesis, and GATA2, SRSF2, and TET2 mutations, (2) an AMoL remission clone, with mutated GATA2, SRSF2, and TET2 only (possibly the founding clone (pre-leukemic HSC) that survived chemotherapy), (3) a small subclone which had JAK2 mutation during the AMoL remission, appearing at MPN-U manifestation with additional mutations. These findings suggest that pre-leukemic HSCs in AML patients may give rise to non-AML myeloid malignancies. This is the first report to analyze the clonal evolution from AMoL to MPN-U, which may provide new insight into the development of myeloid malignancies.

Keywords

Acute myeloid leukemia Pre-leukemic hematopoietic stem cells Myeloproliferative neoplasm Whole-exome sequencing 

Notes

Acknowledgements

We would like to thank Ms. N. Shirahama, Ms Y. Urakami, and Ms. C. Hayashida for their assistance.

Author contribution

S.S., H.I., K.Y. and Ya.M. designed the research; S.S., H.I., M.T., H.M. and A.K. performed genome analysis under the supervision of K.Y.; S.S., H.I., M.T., Y.S., D.I., H.T., T.H., Yu.M. and Ya.M. made diagnoses and analyzed clinical data; S.S., H.I., M.T., H.T., H.M. and Ya.M. wrote the paper; and all reviewed the manuscript. H.I. and M.T. contributed equally to this study.

Funding

This work was supported in part by grant from the Ministry of Health, Labor and Welfare (No. 26271301), Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 26461426) and the Program of the Network-type Joint Usage/Research Centre for Radiation Disaster Medical Science.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

12185_2018_2419_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)
12185_2018_2419_MOESM2_ESM.pptx (85 kb)
Supplementary material 2 (PPTX 85 kb)
12185_2018_2419_MOESM3_ESM.xlsx (18 kb)
Supplementary material 3 (XLSX 17 kb)
12185_2018_2419_MOESM4_ESM.xlsx (13 kb)
Supplementary material 4 (XLSX 12 kb)
12185_2018_2419_MOESM5_ESM.pptx (41 kb)
Supplementary material 5 (PPTX 41 kb)
12185_2018_2419_MOESM6_ESM.xlsx (11 kb)
Supplementary material 6 (XLSX 11 kb)
12185_2018_2419_MOESM7_ESM.docx (16 kb)
Supplementary material 7 (DOCX 16 kb)

References

  1. 1.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111(7):2548–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukemia. Nature. 2014;506(7488):328–33.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Nangalia J, Massie CE, Baxter EJ, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301.CrossRefPubMedGoogle Scholar
  8. 8.
    Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10(8):e1003665.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples using phylogeny. Bioinformatics. 2015;31(9):1349–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood. 2011;117(4):1109–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Sportoletti P, Varasano E, Rossi R, Mupo A, Tiacci E, Vassiliou G, et al. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications. Leukemia. 2015;29(2):269–78.CrossRefPubMedGoogle Scholar
  14. 14.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kunimoto H, Nakajima H. Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int J Hematol. 2017;016(1):34–44.CrossRefGoogle Scholar
  16. 16.
    Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28(24):3858–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R, et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood. 2005;106(8):2854–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B, et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012;120(2):395–403.CrossRefPubMedGoogle Scholar
  20. 20.
    Hahn CN, Chong CE, Camichael CL, Wilkins EJ, Brautigan PJ, Li XC, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49(2):204–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Prick J, de Haan G, Green AR, Kent DG. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Exp Hematol. 2014;42(10):841–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ, et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood. 2006;108(10):3548–55.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Shinya Sato
    • 1
  • Hidehiro Itonaga
    • 1
  • Masataka Taguchi
    • 2
  • Yasushi Sawayama
    • 1
  • Daisuke Imanishi
    • 3
  • Hideki Tsushima
    • 4
  • Tomoko Hata
    • 1
  • Yukiyoshi Moriuchi
    • 2
  • Hiroyuki Mishima
    • 5
  • Akira Kinoshita
    • 5
  • Koh-ichiro Yoshiura
    • 5
  • Yasushi Miyazaki
    • 1
    • 6
  1. 1.Department of HematologyNagasaki University HospitalNagasakiJapan
  2. 2.Department of HematologySasebo City General HospitalSaseboJapan
  3. 3.Department of HematologyGoto Central HospitalGotoJapan
  4. 4.Department of HematologyNagasaki Harbor Medical Center City HospitalNagasakiJapan
  5. 5.Department of Human Genetics, Atomic Bomb Disease InsutituteNagasaki UniversityNagasakiJapan
  6. 6.Department of HematologyAtomic Bomb Disease Institute, Nagasaki UniversityNagasakiJapan

Personalised recommendations