Advertisement

International Journal of Hematology

, Volume 105, Issue 3, pp 235–243 | Cite as

The initiation and effects of plasma contact activation: an overview

  • Lisha Lin
  • Mingyi Wu
  • Jinhua Zhao
Review Article

Abstract

The plasma contact system sits atop the intrinsic coagulation cascade and plasma kallikrein–kinin pathway, and in vivo its activation contributes, respectively, to coagulation and inflammation mainly via two downstream pathways. This system has been widely investigated, its activation mechanisms by negatively charged surfaces and the interactions within its components, factor XII, prekallikrein and high molecular weight kininogen are well understood at the biochemical level. However, as most of the activators that have been discovered by in vitro experiments are exogenous, the physiological activators and roles of the contact system have remained unclear and controversial. In the last two decades, several physiological activators have been identified, and a better understanding of its roles and its connection with other signaling pathways has been obtained from in vivo studies. In this article, we present an overview of the contact pathway with a focus on the activation mechanisms, natural stimuli, possible physiological roles, potential risks of its excessive activation, remaining questions and future prospects.

Keywords

Contact activation Kallikrein–kinin Coagulation Inflammation Factor XII 

Abbreviations

FXII

Factor XII

FXI

Factor XI

PK

Prekallikrein

HK

High molecular weight kininogen

BK

Bradykinin

KK

Kallikrein

B1R

Kinin B1 receptors

B2R

Kinin B1 receptors

polyP

Polyphosphate

uPAR

Urokinase-type plasminogen activator receptor

gC1qR

Globular heads of complement C1q

PRCP

Prolylcarboxypeptidase

Hsp90

Heat shock protein 90

FVII

Factor VII

TF

Tissue factor

APTT

Activated partial prothrombin time

ACT

Activated coagulation time

HAE

Hereditary angioedema

C1IHN

C1 inhibitor

OSCS

Oversulfated chondroitin sulfate

Notes

Acknowledgements

This work was funded in part by the Yunnan Provincial Science and Technology Department in China (2010CI116, 2013FA046, and 2012FB177), National Natural Science Foundation of China (81102372, 81373292 and 81673330), and Institutes for Drug Discovery and Development, Chinese Academy of Sciences(CASIMM0220151008).

Compliance with ethical standards

Conflict of interest

The authors state that they have no conflict of interest.

References

  1. 1.
    Margolis J. Glass surface and blood coagulation. Nature. 1956;178:805–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Ratnoff OD, Rosenblum JM. Role of Hageman factor in the initiation of clotting by glass (evidence that glass frees Hageman factor from inhibition). Am J Med. 1958;25:160–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Schmaier AH, Mccrae KR. The plasma kallikrein–kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Schmaier AH. The elusive physiologic role of factor XII. J Clin Invest. 2008;118:3006–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bjorkqvist J, Jamsa A, Renné T. Plasma kallikrein: the bradykinin-producing Enzyme. Thromb Haemost. 2013;110:399–407.CrossRefPubMedGoogle Scholar
  6. 6.
    Yarovaya GA, Neshkova AE. Past and present research on the kallikrein–kinin system (on the 90th anniversary of the discovery of the system). Rus J Bioorg Chem. 2015;41:245–59.CrossRefGoogle Scholar
  7. 7.
    Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood. 2012;119:5972–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Morrissey JH, Smith SA. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J Thromb Haemost. 2015;13(S1):S92–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Long AT, Kenne E, Jung R, Fuchst AT, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost. 2016;14:427–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Ponczek MB, Gailani D, Doolittle RF. Evolution of the contact phase of vertebrate bood coagulation. J Thromb Haemost. 2008;6:1876–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Revenko AS, Gao D, Crosby JR, Bhattacharjee G, Zhao C, May C, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302–11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost. 2016;14:28–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Silverberg M, Diehl SV. The activation of the contact system of human plasma by polysaccharide sulfates. Ann N Y Acad Sci. 1987;516:268–79.CrossRefPubMedGoogle Scholar
  14. 14.
    Samuel M, Pixley RA, Villanueva MA, Colmans RW, Villanueva GB. Human factor XII (Hageman factor) autoactivation by dextran sulfate. J Biol Chem. 1992;267:19691–7.PubMedGoogle Scholar
  15. 15.
    Silverberg M, Dum JT, Garen L, Kaplan AP. Autoactivation of human Hageman factor; demonstration utilizing a synthetic substrate. J Biol Chem. 1980;255:7281–6.PubMedGoogle Scholar
  16. 16.
    Sugo T, Kato H, Iwanaga S, Takada K, Sakakibara S. Kinetic studies on surface-mediated activation of bovine factor XI1 and prekallikrein; effects of kaolin and high-Mr kininogen on the activation reactions. Eur J Biochem. 1985;146:43–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Griffin JH. Role of surface in surface-dependent activation of Hageman factor (blood coagulation factor XII). Proc Natl Acad Sci USA. 1978;75:1998–2002.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Revak SD, Cochrane CG, Bouma BN, Griffin JH. Surface and fluid phase activities of two forms of activated Hageman factor produced. J Exp Med. 1978;147:719–29.CrossRefPubMedGoogle Scholar
  19. 19.
    Hojima Y, Cochrane CG, Wiggins RC, Austen KF, Stevens RL. In vitro activation of the contact (Hageman factor) system of plasma by heparin and chondroitin sulfate E. Blood. 1984;63:1453–9.PubMedGoogle Scholar
  20. 20.
    Citarellaf F, Wuillemin WA, Lubbers YTP, Hack CE. Initiation of contact system activation in plasma is dependent on factor XII autoactivation and not on enhanced susceptibility of factor XII for kallikrein cleavage. Br J Haematol. 1997;99:197–205.CrossRefGoogle Scholar
  21. 21.
    Pan J, Qian Y, Zhou X, Lu H, Ramacciotti E, Zhang L. Chemically oversulfated glycosaminoglycans are potent modulators of contact system activation and different cell signaling pathways. J Biol Chem. 2010;285:22966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Silverberg M, Diehl SV. The autoactivation of factor XII (Hageman factor) Induced by low-Mr heparin and dextran sulfate. The effect of the Mr of the activating polyanion. Biochem J. 1987;248:715–20.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials. 2009;30:1857–69.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Geddings JE, Mackman N. New players in haemostasis and thrombosis. Thromb Haemost. 2014;111:570–4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139:1143–56.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Caen J, Wu Q. Hageman factor, platelets and polyphosphates: early history and recent connection. J Thromb Haemost. 2010;8:1670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Azevedo C, Saiardi A. Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochem Soc Trans. 2014;42:98–102.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, et al. Polyphosphate exerts differential effects on blood clotting. Depending on polymer size. Blood. 2010;116:4353–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engel R, Brain CM, Paget J, Lionikiene AS, Mutch NJ. Single-chain factor XII exhibits activity when complexed to polyphosphate. J Thromb Haemost. 2014;12:1513–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Maas C, Govers-Riemslag JWP, Bouma B, Schiks B, Hazenberg BPC, Lokhorst HM, et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest. 2008;118:3208–18.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104:6388–93.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shashank J, Pitoc GA, Holl EK, Zhang Y, Borst L, Leong KW, et al. Nucleic acid scavengers Inhibit thrombosis without increasing bleeding. Proc Natl Acad Sci USA. 2012;109:12938–43.CrossRefGoogle Scholar
  33. 33.
    Røjkjæ RSAH. Activation of the plasma kallikrein/kinin system on endothelial cell membranes. Immunopharmacology. 1999;43:109–14.CrossRefGoogle Scholar
  34. 34.
    Røjkjæ R, Schmaier AH. Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int Immunopharmacol. 2008;8:161–5.CrossRefGoogle Scholar
  35. 35.
    Motta G, Rojkjae R, Hasan AAK, Cines DB, Schmaier AH. High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation. Blood. 1998;91:516–28.PubMedGoogle Scholar
  36. 36.
    Mahdi F, Shariat-Mada Z, Schmaier AH. The relative priority of prekallikrein and factors XI/XIa assembly on cultured endothelial cells. J Biol Chem. 2003;278:43983–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Renné T, Schuh K, Müller-Esterl W. Local bradykinin formation is controlled by glycosaminoglycans. J Immunol. 2005;175:3377–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Kbjkjer R, Schousboe I. The surface-dependent autoactivation mechanism of factor XII. Eur J Biochem. 1997;243:160–6.CrossRefGoogle Scholar
  39. 39.
    Josep K, Tholanikunnel BG, Kaplan AP. Heat shock protein 90 catalyzes activation of the prekallikrein–kininogen complex in the absence of factor XII. Proc Natl Acad Sci USA. 2002;99:896–900.CrossRefGoogle Scholar
  40. 40.
    Joseph K, Tholanikunnelb BG, Kaplan AP. Activation of the bradykinin-forming cascade on endothelial cells: a role for heat shock protein 90. Int Immunopharmacol. 2002;2:1851–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Shariat-Madar Z, Mahdi F, Schmaier AH. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem. 2002;277:17962–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Joseph K, Tholanikunnel BG, Bygum A, Ghebrehiwet B, Kaplan AP. Factor XII-independent activation of the bradykinin-forming cascade: implications for the pathogenesis of hereditary angioedema types I and II. J Allergy Clin Immunol. 2013;132:470–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Tans G, Rosing J, Berrettin M, Lamml B, Griffin JH. Autoactivation of human plasma prekallikrein. J Biol Chem. 1987;262:11308–14.PubMedGoogle Scholar
  44. 44.
    Herwald H, Mörgelin M, Olsén A, Rhen M, Dahlback B, Muller-Esterl W, et al. Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases. Nat Med. 1998;4:298–302.CrossRefPubMedGoogle Scholar
  45. 45.
    Triggers Mackman N. Targets and treatments for thrombosis. Nature. 2008;451:914–8.CrossRefGoogle Scholar
  46. 46.
    Renné T. The procoagulant and proinflammatory plasma contact system. Semin Immunopathol. 2012;34:31–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Colman RW. Are hemostasis and thrombosis two sides of the same coin? J Exp Med. 2006;03:493–5.CrossRefGoogle Scholar
  48. 48.
    Gailani D, Broze GJ. Factor XII-independent activation of factor XI in plasma: effects of sulfatides on tissue factor-induced coagulation. Blood. 1993;82:813–9.PubMedGoogle Scholar
  49. 49.
    Poller L. Laboratory techniques in thrombosis—a manual [M], second revised edition of the ECAT assay procedures. Dordrecht: Kluwer Academic Publishers; 1999. p. 307.Google Scholar
  50. 50.
    Renné T, Pozgajova M, Gruner S, Schuh K, Pauer H-U, Burfeind P, et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med. 2005;202:271–81.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kleinschnitz C, Stoll G, Bendszus M, Schuh K, Pauer H-U, Burfeind P, et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med. 2006;203:513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kenne E, Renné T. Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov Today. 2014;19:1459–64.CrossRefPubMedGoogle Scholar
  53. 53.
    Kolyadko VN, Korneeva VA, Ataullakhanov FI, Panteleev MA. Molecular mechanisms of thrombosis fundamental and applied aspects of the contact activation. Biochem (Moscow) Suppl Ser A Memb Cell Biol. 2014;8:279–89.CrossRefGoogle Scholar
  54. 54.
    Gruber A. The role of the contact pathway in thrombus propagation. Thromb Res. 2014;133(S1):S45–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement-their role in inflammation. Semin Immunopathol. 2012;34:151–65.CrossRefPubMedGoogle Scholar
  56. 56.
    Frick I-G, Åkesson P, Herwald P, Mörgelin M, Malmsten M, Nägler DK, et al. The contact system—a novel branch of innate immunity generating antibacterial peptides. Eur Mol Biol Organ J. 2006;25:5569–78.CrossRefGoogle Scholar
  57. 57.
    Loof TG, Schmidt O, Herwald H, Theopold U. Coagulation systems of invertebrates and vertebrates and their roles in inate immunity: the same side of two coins? J Innate Immun. 2011;3:34–40.CrossRefPubMedGoogle Scholar
  58. 58.
    Sala-Cunill A, Bjorkqvist J, Senter R, Guilarte M, Cardona V, Labrador M, et al. Plasma contact system activation drives anaphylaxis in severe mast cell-mediated allergic reactions. J Allergy Clin Immunol. 2015;135:1031–43.CrossRefPubMedGoogle Scholar
  59. 59.
    Oschatz C, Maas C, Lecher B, Jansen T, BjÖrkqvist J, Tradler T, et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity. 2011;34:258–68.CrossRefPubMedGoogle Scholar
  60. 60.
    Moreno-Sanchez D, Hernandez-Ruiz L, Ruiz FA. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem. 2012;287:28435–44.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kaplan AP. Bradykinin-mediated diseases. history of allergy. Chem Immunol Allergy. 2014;100:140–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Kaplan AP, Joseph K, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol. 2002;109:195–209.CrossRefPubMedGoogle Scholar
  63. 63.
    Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis AE. Increased vascular permeability in C1 inhibitor–deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest. 2002;109:1057–63.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sharma JN, Urea K, Noor AR, Rahman ARA. Blood pressure regulation by the kallikrein–kinin system. Gen Pharmacol. 1996;27:55–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47:2161–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Pixley RA, Cadena RDL, Page JD, Kaufman N, Wyshock EG, Chang A, et al. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. J Clin Invest. 1993;91:61–8.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008;358:2457–67.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Adam A, Montpas N, Keire D, Désormeauxa A, Brownc NJ, Marceauet F, et al. Bradykinin forming capacity of oversulfated chondroitin sulfate contaminated heparin in vitro. Biomaterials. 2010;31:5741–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Siebeck M, Cheronis JC, Fink E, Kohl J, Spies B, Spannagl M, et al. Dextran sulfate activates contact system and mediates arterial hypotension via B2 kinin receptors. J Appl Physiol. 1994;77:2675–80.PubMedGoogle Scholar
  70. 70.
    Fonseca RJC, Oliveira SNMCG, Pomin VH, Mecawi AS, Araujo IG, Mourão PAS. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation challenges for the study of anticoagulant polysaccharides. Thromb Haemost. 2010;103:994–1004.CrossRefPubMedGoogle Scholar
  71. 71.
    Ghebrehiwet B, Randazzo BP, Dunn JP, Silverberg M, Kaplan A. mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest. 1983;71:1450–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Conway EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost. 2015;13(S1):S121–32.CrossRefPubMedGoogle Scholar
  73. 73.
    Li B, Suwan J, Martin JG, Zhang F, Zhang Z, Hoppensteadt D, et al. Oversulfated chondroitin sulfate interaction with heparin-binding proteins: new insights into adverse reactions from contaminated heparins. Biochem Pharmacol. 2009;7(8):292–300.CrossRefGoogle Scholar
  74. 74.
    Bjorkqvist J, Nickel KF, Stavrou E, Renné T, et al. In vivo activation and functions of the protease factor XII. Thromb Haemost. 2014;112:868–75.CrossRefPubMedGoogle Scholar
  75. 75.
    Doolittle RF. Coagulation in vertebrates with a focus on evolution and inflammation. J Innate Immun. 2011;3:9–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Zamolodchikov D, Chen ZL, Conti BA, Rennéb T, Stricklanda S. Activation of the factor XII-driven contact system in Alzheimer’s disease patient and mouse model plasma. Proc Natl Acad Sci USA. 2015;112:4068–73.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Schmaier AH. Physiologic activities of the contact ativation system. Thromb Res. 2014;133(S1):S41–4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Caliez C, Wuillemin WA, Zeerleder S, Redondo M, Eisele B, Hack CE. C1-Esterase inhibitor: an Anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev. 2000;52:91–112.Google Scholar
  79. 79.
    Melo FR, Mourao PAS. An algal sulfated galactan has an unusual dual effect on venous thrombosis due to activation of factor XII and inhibition of the coagulation proteases. Thromb Haemost. 2008;99:531–8.PubMedGoogle Scholar
  80. 80.
    Endler G, Marsik C, Jilma B, Schickbauer T, Quehenberger P, Mannhalter C. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost. 2007;5:1143–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Pharmaceutical Chemistry, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations