International Journal of Hematology

, Volume 103, Issue 3, pp 283–291 | Cite as

Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insufficiency

  • Xinping Fan
  • Johanna A. Kremer Hovinga
  • Hiroko Shirotani-Ikejima
  • Yuka Eura
  • Hidenori Hirai
  • Shigenori Honda
  • Koichi Kokame
  • Magnus Mansouri Taleghani
  • Anne-Sophie von Krogh
  • Yoko Yoshida
  • Yoshihiro Fujimura
  • Bernhard Lämmle
  • Toshiyuki Miyata
Original Article

Abstract

The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes.

Keywords

Atypical hemolytic uremic syndrome Complement factors Renal insufficiency Thrombotic thrombocytopenic purpura Upshaw–Schulman syndrome 

References

  1. 1.
    Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, Funato M, et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci. 2002;99:11902–7.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Furlan M, Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14:437–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Fujimura Y, Matsumoto M, Isonishi A, Yagi H, Kokame K, Soejima K, et al. Natural history of Upshaw–Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost. 2011;9(Suppl 1):283–301.CrossRefPubMedGoogle Scholar
  5. 5.
    Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:1676–87.CrossRefPubMedGoogle Scholar
  6. 6.
    George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:1847–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–6.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Miyata T, Uchida Y, Ohta T, Urayama K, Yoshida Y, Fujimura Y. Atypical haemolytic uraemic syndrome in a Japanese patient with DGKE genetic mutations. Thromb Haemost; 2015:114:862–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Noris M, Bucchioni S, Galbusera M, Donadelli R, Bresin E, Castelletti F, et al. Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J Am Soc Nephrol. 2005;16:1177–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Kremer Hovinga JA, Lämmle B. Role of ADAMTS13 in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. Hematol Am Soc Hematol Educ Program. 2012;2012:610–6.Google Scholar
  11. 11.
    Mansouri Taleghani M, von Krogh AS, Fujimura Y, George JN, Hrachovinova I, Knobl PN, et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie. 2013;33:138–43.CrossRefPubMedGoogle Scholar
  12. 12.
    Kremer Hovinga JA, Vesely SK, Terrell DR, Lammle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115:1500–11.CrossRefPubMedGoogle Scholar
  13. 13.
    Froehlich-Zahnd R, George JN, Vesely SK, Terrell DR, Aboulfatova K, Dong JF, et al. Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocytopenic purpura. Haematologica. 2012;97:297–303.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion. 2006;46:1444–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Fan X, Yoshida Y, Honda S, Matsumoto M, Sawada Y, Hattori M, et al. Analysis of genetic and predisposing factors in Japanese patients with atypical hemolytic uremic syndrome. Mol Immunol. 2013;54:238–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumoto T, Fan X, Ishikawa E, Ito M, Amano K, Toyoda H, et al. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p. I1157T mutation. Int J Hematol. 2014;100:437–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol. 2009;10:728–33.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Eura Y, Kokame K, Takafuta T, Tanaka R, Kobayashi H, Ishida F, et al. Candidate gene analysis using genomic quantitative PCR: identification of ADAMTS13 large deletions in two patients with Upshaw–Schulman syndrome. Mol Genet Genomic Med. 2014;2:240–4.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Yuasa I, Nakagawa M, Umetsu K, Harihara S, Matsusue A, Nishimukai H, et al. Molecular basis of complement factor I (CFI) polymorphism: one of two polymorphic suballeles responsible for CFI A is Japanese-specific. J Hum Genet. 2008;53:1016–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Schneppenheim R, Kremer Hovinga JA, Becker T, Budde U, Karpman D, Brockhaus W, et al. A common origin of the 4143insA ADAMTS13 mutation. Thromb Haemost. 2006;96:3–6.PubMedGoogle Scholar
  21. 21.
    Heurich M, Martinez-Barricarte R, Francis NJ, Roberts DL, Rodriguez de Cordoba S, Morgan BP, et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci. 2011;108:8761–6.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–62.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Roversi P, Johnson S, Caesar JJ, McLean F, Leath KJ, Tsiftsoglou SA, et al. Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc Natl Acad Sci. 2011;108:12839–44.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Abrera-Abeleda MA, Nishimura C, Frees K, Jones M, Maga T, Katz LM, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22:1551–9.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39:1200–1.CrossRefPubMedGoogle Scholar
  26. 26.
    Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357:553–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Tortajada A, Montes T, Martinez-Barricarte R, Morgan BP, Harris CL, de Cordoba SR. The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. Hum Mol Genet. 2009;18:3452–61.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Montes T, Tortajada A, Morgan BP, de Cordoba SR, Harris CL. Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci. 2009;106:4366–71.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Marinozzi MC, Vergoz L, Rybkine T, Ngo S, Bettoni S, Pashov A, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25:2053–65.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003;12:3385–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Jozsi M, Licht C, Strobel S, Zipfel SL, Richter H, Heinen S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111:1512–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Noris M, Mescia F, Remuzzi G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol. 2012;8:622–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Tati R, Kristoffersson AC, Stahl AL, Rebetz J, Wang L, Licht C, et al. Complement activation associated with ADAMTS13 deficiency in human and murine thrombotic microangiopathy. J Immunol. 2013;191:2184–93.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Reti M, Farkas P, Csuka D, Razso K, Schlammadinger A, Udvardy ML, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10:791–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2016

Authors and Affiliations

  • Xinping Fan
    • 1
    • 6
  • Johanna A. Kremer Hovinga
    • 2
  • Hiroko Shirotani-Ikejima
    • 1
  • Yuka Eura
    • 1
  • Hidenori Hirai
    • 1
  • Shigenori Honda
    • 1
  • Koichi Kokame
    • 1
  • Magnus Mansouri Taleghani
    • 2
  • Anne-Sophie von Krogh
    • 3
    • 4
  • Yoko Yoshida
    • 5
  • Yoshihiro Fujimura
    • 5
  • Bernhard Lämmle
    • 2
    • 7
  • Toshiyuki Miyata
    • 1
    • 8
  1. 1.Department of Molecular PathogenesisNational Cerebral and Cardiovascular CenterSuitaJapan
  2. 2.Department of Hematology and Central Hematology Laboratory, InselspitalBern University Hospital and University of BernBernSwitzerland
  3. 3.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  4. 4.Department of HematologySt Olavs Hospital Trondheim University HospitalTrondheimNorway
  5. 5.Department of Blood Transfusion MedicineNara Medical UniversityKashiharaJapan
  6. 6.Department of Clinical LaboratoryBeijing Chaoyang Hospital, Capital Medical UniversityBeijingChina
  7. 7.Center for Thrombosis and Hemostasis (CTH)University Medical Center MainzMainzGermany
  8. 8.Department of Cerebrovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan

Personalised recommendations