Advertisement

International Journal of Hematology

, Volume 102, Issue 2, pp 238–243 | Cite as

Successful treatment of refractory cold hemagglutinemia in MYD88 L265P mutation-negative Waldenström’s macroglobulinemia with bortezomib

  • Mayuko Izumi
  • Hiroko Tsunemine
  • Yasuhiro Suzuki
  • Akihiro Tomita
  • Toshiko Kusumoto
  • Taiichi Kodaka
  • Kiminari Itoh
  • Takayuki TakahashiEmail author
Case Report

Abstract

We report here the successful treatment of cold agglutinin-associated refractory hemolysis with bortezomib in a patient with Waldenström’s macroglobulinemia (WM). A 78-year-old man was referred to our hospital with cold hemagglutinemia of unknown cause. Laboratory examination revealed a hemoglobin concentration of 6.9 g/dL, serum IgM concentration of 1904 mg/dL, and a titer of cold hemagglutinin of over ×8192. Serum immunoelectrophoresis demonstrated monoclonal protein of the IgM-κ type. A bone marrow aspirate showed many lymphoplasmacytic cells, which were positive for CD19, CD20, CD38, and cytoplasmic μ and κ light chains. A diagnosis of WM-associated cold hemagglutinemia was made. Because of red blood cell transfusion-dependency, we treated him with intravenous fludarabine, oral melphalan–prednisolone, cyclophosphamide, and melphalan, and two courses of R-CHOP in sequence with a marked decrease of serum IgM (928 mg). We then started weekly bortezomib plus dexamethasone (BD) therapy, as he was still transfusion-dependent. Soon after the initiation of BD, he achieved transfusion independence, with a further decrease in serum levels of IgM and marked improvement of anemia. Interestingly, his marrow abnormal lymphocytes were later found not to carry the MYD88 L265P mutation. The successful treatment with bortezomib for WM lacking this mutation is discussed.

Keywords

Waldenström’s macroglobulinemia Cold hemagglutinemia Hemolytic anemia MYD88 L265P mutation Bortezomib 

Notes

Conflict of interest

The authors disclose that they have no conflicts of interest with any individuals or companies.

References

  1. 1.
    Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenström’s Macroglobulinemia. Semin Oncol. 2003;30:110–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Sweldrow SH, Berger F, Pileri SA, Harris NL, Jaffe ES, Stein H. lymphoplasmacytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, et al., editors. World Health Organization (WHO) classification of tumors. Lyon, France, International Agency for Research on Cancer: Pathology and genetics tumors of haematopoietic and lymphoid tissues; 2008. p. 194–5.Google Scholar
  3. 3.
    Treon SP. How I treat Waldenström macroglobulinemia. Blood. 2009;114:2375–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Crisp D, Pruzanski W. B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med. 1982;72:915–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Stone MJ, McElroy YG, Pestronk A, Reynolds JL, Newman JT, Tong AW. Human monoclonal macroglobulins with antibody activity. Semin Oncol. 2003;30:318–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Berentsen S. Cold agglutinin-mediated autoimmune hemolytic anemia in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9:110–2.PubMedCrossRefGoogle Scholar
  7. 7.
    Souchet-Compain L, Nguyen S, Choquet S, Leblond V. Fludarabine in Waldenström’s macroglobulinemia. Expert Rev Hematol. 2013;6:229–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Souchet-Compain L, Nguyen S, Choquet S, Leblond V. Primary therapy of Waldenström macroglobulinemia with nucleoside analogue-based therapy. Clin Lymphoma Myeloma Leuk. 2013;13:227–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Dimopoulos MA, Gertz MA, Kastritis E, Garcia-Sanz R, Kimby EK, Leblond V, et al. Update on treatment recommendations from the Fourth International Workshop on Waldenström’s Macroglobulinemia. J Clin Oncol. 2009;27:120–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Gertz MA. Waldenström macroglobulinemia: 2011 update on diagnosis, risk stratification, and management. Am J Hematol. 2011;86:411–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Treon SP, Ioakimidis L, Soumerai JD, Patterson CJ, Sheehy P, Nelson M, et al. Primary therapy of Waldenström macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009;27:3830–5.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Carson KR, Beckwith LG, Metha J. Successful treatment of IgM-mediated autoimmune hemolytic anemia with bortezomib. Blood. 2010;115:915.PubMedCrossRefGoogle Scholar
  13. 13.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström’s macrogloburinemia. N Engl J Med. 2012;367:826–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Dacie JV. Auto-immune haemolytic anaemia (AIHA): cold antibody syndromes I idiopathic types: clinical presentation and haematological findings. In: Dacie JV, editor. The Haemolytic Anaemias. Churchhill: Livingstone; 1992. p. 210–39.Google Scholar
  15. 15.
    Randen U, Trøen G, Tierens A, Steen C, Warsame A, et al. Primary cold agglutinin-associated lymphoproliferative disease: a B cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica. 2014;99:497–504.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B cell lymphomagenesis. Blood. 2014;123:1637–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen C, Kouroukis CT, White D, Voralia M, Stadtmauer E, Stewart AK, et al. Bortezomib in relapsed or refractory Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9:74–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghobrial IM, Hong F, Padmanabhan S, Badros A, Rourke M, Leduc R, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenström Macroglobulinemia. J Clin Oncol. 2010;28:1422–8.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Dimopoulos MA, García-Sanz R, Gavriatopoulou M, Morel P, Kyrtsonis MC, Michalis E, et al. Primary therapy of Waldenström macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BOR): long-term results of a phase 2 study of the European myeloma network (EMN). Blood. 2013;122:3276–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Dimopoulos MA, Terpos E, Kastritis E. Proteasome inhibitor therapy for Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2013;13:235–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14:219–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Kikuchi J, Wada T, Shimizu R, Izumi T, Akutsu M, et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood. 2010;116:406–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Shi J, Rose EL, Singh A, Hussain S, Stagliano NE, Parry GC, et al. TNT003, an inhibitor of the serine protease C1 s, prevents complement activation induced by cold agglutinins. Blood. 2014;123:4015–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanaka H, Hashimoto S, Sugita Y, Sakai S, Takeda Y, Abe D, et al. Occurrence of lymphoplasmacytic lymphoma 6 years after amelioration of primary cold agglutinin disease by rituximab therapy. Int H Haematol. 2012;96:501–5.CrossRefGoogle Scholar
  26. 26.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2015

Authors and Affiliations

  • Mayuko Izumi
    • 1
  • Hiroko Tsunemine
    • 1
  • Yasuhiro Suzuki
    • 2
  • Akihiro Tomita
    • 2
  • Toshiko Kusumoto
    • 3
  • Taiichi Kodaka
    • 1
  • Kiminari Itoh
    • 1
  • Takayuki Takahashi
    • 1
    Email author
  1. 1.Department of HematologyShinko HospitalKobeJapan
  2. 2.Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
  3. 3.Department of Laboratory MedicineKobe Medical Center General HospitalKobeJapan

Personalised recommendations