Advertisement

International Journal of Hematology

, Volume 99, Issue 2, pp 169–174 | Cite as

RUNX1 mutation associated with clonal evolution in relapsed pediatric acute myeloid leukemia with t(16;21)(p11;q22)

  • Olfat IsmaelEmail author
  • Akira Shimada
  • Shaimaa Elmahdi
  • Momen Elshazley
  • Hideki Muramatsu
  • Asahito Hama
  • Yoshiyuki Takahashi
  • Miho Yamada
  • Yuka Yamashita
  • Keizo Horide
  • Seiji KojimaEmail author
Original Article

Abstract

TLS/FUS-ERG chimeric fusion transcript resulting from translocation changes involving chromosomes 16 and 21 is a rare genetic event associated with acute myeloid leukemia (AML). The distinct t(16;21) AML subtype exhibits unique clinical and morphological features and is associated with poor prognosis and a high relapse rate; however, the underlying mechanism remains to be clarified. Recently, whole-genome sequencing revealed a large set of genetic alterations that may be relevant for the dynamic clonal evolution and relapse pathogenesis of AML. Here, we report three pediatric AML patients with t(16;21) (p11; q22). The TLS/FUS-ERG fusion transcript was detected in all diagnostic and relapsed samples, with the exception of one relapsed sample. We searched for several genetic lesions, such as RUNX1, FLT3, c-KIT, NRAS, KRAS, TP53, CBL, ASXL1, IDH1/2, and DNMT3A, in primary and relapsed AML samples. Interestingly, we found RUNX1 mutation in relapsed sample of one patient in whom cytogenetic analysis showed the emergence of a new additional clone. Otherwise, there were no genetic alterations in FLT3, c-KIT, NRAS, KRAS, TP53, CBL, ASXL1, IDH1/2, or DNMT3A. Our results suggest that precedent genetic alterations may be essential to drive the progression and relapse of t(16;21)-AML patients.

Keywords

RUNX1 AML Translocation TLS/FUS-ERG 

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J, Tillman RM, Ramani P, Cullinane C, Coleman N. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res. 2003;63:4568–76.PubMedGoogle Scholar
  2. 2.
    Ferro MR, Cabello P, Garcia-Sagredo JM, Resino M, San Roman C, Larana JG. t(16;21) in a Ph positive CML. Cancer Genet Cytogenet. 1992;60:210–1.Google Scholar
  3. 3.
    Mecucci C, Bosly A, Michaux JL, Broeckaert-Van Orshoven A, Van den Berghe H. Acute nonlymphoblastic leukemia with bone marrow eosinophilia and structural anomaly of chromosome 16. Cancer Genet Cytogenet. 1985;17:359–63.Google Scholar
  4. 4.
    Morgan R, Riske CB, Meloni A, Ries CA, Johnson CH, Lemons RS, Sandberg AA. t(16;21)(p11.2;q22): a recurrent primary rearrangement in ANLL. Cancer Genet Cytogenet. 1991;53:83–90.Google Scholar
  5. 5.
    Yao E, Sadamori N, Nakamura H, Sasagawa I, Itoyama T, Ichimaru M, Tagawa M, Nakamura I, Kamei T. Translocation t(16;21) in acute nonlymphocytic leukemia with abnormal eosinophils. Cancer Genet Cytogenet. 1988;36:221–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N, Kaneko Y, Sako M, Kobayashi Y, Tojou A, Miura I, Kakuda H, Funabiki T, Horibe K, Hamaguchi H, Akiyama Y, Bessho F, Yanagisawa M, Hayashi Y. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood. 1997;90:1192–9.PubMedGoogle Scholar
  7. 7.
    Jekarl DW, Kim M, Lim J, Kim Y, Han K, Lee AW, Kim HJ, Min WS. CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). Int J Hematol. 2010;92:306–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M, Tadrist Z, Olschwang S, Vey N, Birnbaum D, Gelsi-Boyer V, Mozziconacci MJ. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer. 2010;10:401.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrozek K, Radmacher MD, Kohlschmidt J, Nicolet D, Whitman SP, Wu YZ, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Moore JO, Caligiuri MA, Larson RA, Bloomfield CD. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2012;30(7):742–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Ruan M, Wang YQ, Zhang L, Liu TF, Liu F, Liu XM, Zhang JY, Zou Y, Chen YM. Zhu XF [FLT3 mutations in children with acute myeloid leukemia: a single center study]. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13:863–6.PubMedGoogle Scholar
  11. 11.
    Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrozek K, Nicolet D, Whitman SP, Wu YZ, Schwind S, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118:6920–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Ahmad EI, Gawish HH, Al Azizi NM, Elhefni AM. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine. Onco Targets Ther. 2011;4:115–21.Google Scholar
  13. 13.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, Mardis ER, Wilson RK, DiPersio JF. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, Preudhomme C. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia. 2003;17:9–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114:5352–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Auewarakul CU, Leecharendkeat A, Tocharoentanaphol C, Promsuwicha O, Sritana N, Thongnoppakhun W. AML1 mutation and its coexistence with different transcription factor gene families in de novo acute myeloid leukemia (AML): redundancy or synergism. Haematologica. 2007;92:861–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, Yang FC, Xu M. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.PubMedCrossRefGoogle Scholar
  18. 18.
    Klaus M, Psaraki A, Mastrodemou S, Pyrovolaki K, Mavroudi I, Kalpadakis C, Papadaki HA. Evaluation of TET2 deletions in myeloid disorders: a fluorescence in situ hybridization analysis of 109 cases. Leuk Res. 2011;35:413–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Fathi AT, Abdel-Wahab O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol. 2012;2012:469592.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, Curfman J, Holland KB, Schwind S, Whitman SP, Wu YZ, Blum W, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29:1373–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Shikami M, Miwa H, Nishii K, Takahashi T, Shiku H, Tsutani H, Oka K, Hamaguchi H, Kyo T, Tanaka K, Kamada N, Kita K. Myeloid differentiation antigen and cytokine receptor expression on acute myelocytic leukaemia cells with t(16;21)(p11;q22): frequent expression of CD56 and interleukin-2 receptor alpha chain. Br J Haematol. 1999;105:711–9.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2013

Authors and Affiliations

  • Olfat Ismael
    • 1
    • 2
    Email author
  • Akira Shimada
    • 1
    • 3
    • 4
  • Shaimaa Elmahdi
    • 1
  • Momen Elshazley
    • 5
    • 6
  • Hideki Muramatsu
    • 1
  • Asahito Hama
    • 1
  • Yoshiyuki Takahashi
    • 1
  • Miho Yamada
    • 3
  • Yuka Yamashita
    • 3
  • Keizo Horide
    • 3
  • Seiji Kojima
    • 1
    Email author
  1. 1.Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Department of Pediatrics, EL-Hilal HospitalGeneral Authority for Health InsuranceSohagEgypt
  3. 3.Clinical Research Center, National Hospital OrganizationNagoya Medical CenterNagoyaJapan
  4. 4.Department of PediatricsOkayama University HospitalOkayamaJapan
  5. 5.Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
  6. 6.Industrial Medicine and Occupational Diseases Unit, Faculty of MedicineSohag UniversitySohagEgypt

Personalised recommendations