International Journal of Hematology

, Volume 96, Issue 6, pp 764–772 | Cite as

Bortezomib regulates the chemotactic characteristics of T cells through downregulation of CXCR3/CXCL9 expression and induction of apoptosis

  • Wei Liu
  • Han-Yun Ren
  • Yu-Jun Dong
  • Li-Hong Wang
  • Yue Yin
  • Yuan Li
  • Zhi-Xiang Qiu
  • Xi-Nan Cen
  • Yong-Jin Shi
Original Article


The chemotactic movement of T lymphocytes mediated by chemokines and their receptors plays an important role in the pathogenesis of graft-versus-host disease (GVHD) post-allogeneic hematopoietic stem cell transplantation (allo-HSCT). CCR7 and CXCR3 are two receptors associated with the development of GVHD. Bortezomib, a proteasome inhibitor, was recently found to prevent GVHD in a mouse model and to decrease the production of Th1 cytokines. Here, we report that bortezomib differentially regulates the expression of CXCR3 and CCR7 on T cells; it significantly decreases CXCR3 expression on T cells as well as its CD4+/CD8+ subsets in a dose-dependent manner, while it does not significantly affect CCR7 expression on T cells and subsets. Moreover, the secretion of CXCL9 by activated T cells is also increasingly downregulated with increasing concentrations of bortezomib. Meanwhile, bortezomib inhibits T-cell chemotactic movements toward CXCL9 in a dose-dependent manner, but has no effect on CCL19-induced T-cell chemotaxis. Additionally, it was found that bortezomib treatment also prompts T-lymphocyte apoptosis through activation of caspase-3 and its downstream PARP cleavage in a dose- and time-dependent manner. These results suggest that bortezomib may act as a suppressor of GVHD by downregulating T-cell chemotatic movement toward GVHD target organs, as well as by inducing apoptosis.


Bortezomib T lymphocyte Chemokine Chemokine receptor Apoptosis 



We thank Dr. Pei Pei and Dr. Hong-Jun Hao for their technical support. This work was supported by grants from the National Natural Science Foundation of China (No. 30940030 & 81070448) and China National Key Technology R&D Program (No. 2008BAI61B01).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol. 2006;43:3–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, Herman EI, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106:1113–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Sackstein R. A revision of Billingham’s tenets: the central role of lymphocyte migration in acute graft-versus-host disease. Biol Blood Marrow Transplant. 2006;12:2–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood. 2005;105:4191–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8:362–71.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Asaro M, Dieli F, Caccamo N, Musso M, Porretto F, Salerno A. Increase of CCR7-CD45RA+ CD8 T cells (T(EMRA)) in chronic graft-versus-host disease. Leukemia. 2006;20:545–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamashita K, Choi U, Woltz PC, Foster SF, Sneller MC, Hakim FT, et al. Severe chronic graft-versus-host disease is characterized by a preponderance of CD4(+) effector memory cells relative to central memory cells. Blood. 2004;103:3986–8.PubMedCrossRefGoogle Scholar
  9. 9.
    de Jager SC, Canté-Barrett K, Bot I, Husberg C, van Puijvelde GH, van Santbrink PJ, et al. Impaired effector memory T-cell regulation facilitates graft versus host disease in CCR7-deficient bone marrow transplant chimeras. Transplantation. 2009;88:631–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Broxmeyer HE. Chemokines and chemokine receptors in hematopoiesis and immunology. Exp Hematol. 2006;34:965–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2:123–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bouazzaoui A, Spacenko E, Mueller GC, Miklos S, Huber E, Holler E, et al. Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease. Genes Immunol. 2009;10:687–701.CrossRefGoogle Scholar
  13. 13.
    Duffner U, Lu B, Hildebrandt GC, Teshima T, Williams DL, Reddy P, et al. Role of CXCR3-induced donor T-cell migration in acute GVHD. Exp Hematol. 2003;31:897–902.PubMedCrossRefGoogle Scholar
  14. 14.
    Ichiba T, Teshima T, Kuick R, Misek DE, Liu C, Takada Y, et al. Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays. Blood. 2003;102:763–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaksch M, Remberger M, Mattsson J. Increased gene expression of chemokine receptors is correlated with acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:280–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Piper KP, Horlock C, Curnow SJ, Arrazi J, Nicholls S, Mahendra P, et al. CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation. Blood. 2007;110:3827–32.PubMedCrossRefGoogle Scholar
  17. 17.
    He S, Cao Q, Qiu Y, Mi J, Zhang JZ, Jin M, et al. A new approach to the blocking of alloreactive T cell-mediated graft-versus-host disease by in vivo administration of anti-CXCR3 neutralizing antibody. J Immunol. 2008;181:7581–92.PubMedGoogle Scholar
  18. 18.
    Hildebrandt GC, Corrion LA, Olkiewicz KM, Lu B, Lowler K, Duffner UA, et al. Blockade of CXCR3 receptor:ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. J Immunol. 2004;173:2050–9.PubMedGoogle Scholar
  19. 19.
    Malynn BA, Ma A. Ubiquitin makes its mark on immune regulation. Immunity. 2010;33(6):843–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer. 2006;6:776–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell. 2004;5:417–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:667–75.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2005;23:676–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.PubMedCrossRefGoogle Scholar
  28. 28.
    Bonvini P, Zorzi E, Basso G, Rosolen A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia. 2007;21:838–42.PubMedGoogle Scholar
  29. 29.
    Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002;277:16639–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Schumacher LY, Vo DD, Garban HJ, Comin-Anduix B, Owens SK, Dissette VB, et al. Immunosensitization of tumor cells to dendritic cell-activated immune responses with the proteasome inhibitor bortezomib (PS-341, Velcade). J Immunol. 2006;176:4757–65.PubMedGoogle Scholar
  31. 31.
    Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 2007;109:4839–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I, et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA. 2004;101:8120–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B, et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood. 2006;107:3575–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F, et al. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood. 2006;108:551–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Caravita T, de Fabritiis P, Palumbo A, Amadori S, Boccadoro M. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat Clin Pract Oncol. 2006;3:374–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003;101:1530–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Berges C, Haberstock H, Fuchs D, Miltz M, Sadeghi M, Opelz G, et al. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology. 2008;124:234–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang X, Ottosson A, Ji C, Feng X, Nordenskjold M, Henter JI, et al. Proteasome inhibition induces apoptosis in primary human natural killer cells and suppresses NKp46-mediated cytotoxicity. Haematologica. 2009;94:470–8.PubMedCrossRefGoogle Scholar
  39. 39.
    D’Souza WN, Chang CF, Fischer AM, Li M, Hedrick SM. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008;181:7617–29.PubMedGoogle Scholar
  40. 40.
    Fennell DA, Chacko A, Mutti L. BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene. 2008;27:1189–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Li C, Li R, Grandis JR, Johnson DE. Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther. 2008;7:1647–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Ji LH, Ren HY, Shi YJ, Cen XN, Qiu ZX, Ou JP, et al. Increment of chemokine CXCL9/Mig in plasma correlated with acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006;14:1200–3.PubMedGoogle Scholar
  43. 43.
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Schuh K, Twardzik T, Kneitz B, Heyer J, Schimpl A, Serfling E. The interleukin 2 receptor alphachain/CD25 promoter is a target for nuclear factor of activated T cells. J Exp Med. 1998;188:1369–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Wysoczanska B, Bogunia-Kubik K, Dlubek D, Jaskula E, Sok A, Drabczak-Skrzypek D, et al. Association with the presence of naive T cells in chronic myeloid leukemia patients after allogeneic human stem cell transplantation and the lower incidence of chronic graft-versus host disease and relapse. Transplant Proc. 2007;39:2898–901.PubMedCrossRefGoogle Scholar
  46. 46.
    Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-κB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood. 2006;107:827–34.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2012

Authors and Affiliations

  • Wei Liu
    • 1
  • Han-Yun Ren
    • 1
  • Yu-Jun Dong
    • 1
  • Li-Hong Wang
    • 1
  • Yue Yin
    • 1
  • Yuan Li
    • 1
  • Zhi-Xiang Qiu
    • 1
  • Xi-Nan Cen
    • 1
  • Yong-Jin Shi
    • 1
  1. 1.Department of HematologyPeking University First HospitalBeijingChina

Personalised recommendations