International Journal of Hematology

, Volume 96, Issue 4, pp 443–449 | Cite as

Clonal expansion of Epstein–Barr virus (EBV)-infected γδ T cells in patients with chronic active EBV disease and hydroa vacciniforme-like eruptions

  • Taizo Wada
  • Akiko Toga
  • Yasuhisa Sakakibara
  • Tomoko Toma
  • Minoru Hasegawa
  • Kazuhiko Takehara
  • Tomonari Shigemura
  • Kazunaga Agematsu
  • Akihiro Yachie
Original Article


Chronic active Epstein–Barr virus (EBV) disease (CAEBV) is a systemic EBV-positive lymphoproliferative disorder characterized by fever, lymphadenopathy, and splenomegaly. Patients with CAEBV may present with cutaneous symptoms, including hypersensitivity to mosquito bites and hydroa vacciniforme (HV)-like eruptions. HV is a rare photodermatosis characterized by vesicles and crust formation after exposure to sunlight, with onset in childhood, and is associated with latent EBV infection. While γδ T cells have recently been demonstrated to be the major EBV-infected cell population in HV, the immunophenotypic features of EBV-infected γδ T cells in CAEBV with HV-like eruptions or HV remain largely undetermined. We describe three patients with CAEBV whose γδ T cells were found to be the major cellular target of EBV. HV-like eruptions were observed in two of these patients. A clonally expanded subpopulation of γδ T cells that were highly activated and T cell receptor Vγ9- and Vδ2-positive cells was demonstrated in all patients. We also show that the clonally expanded γδ T cells infiltrated into the HV-like eruptions in one patient from whom skin biopsy specimens were available. These results suggest the pathogenic roles of clonally expanded γδ T cells infected by EBV in patients with CAEBV and HV-like eruptions.


Epstein–Barr virus Clonal proliferation γδ T cells Hydroa vacciniforme 



We thank Ms Harumi Matsukawa and Ms. Shizu Kouraba for their excellent technical assistance. This work was supported by a grant from Takeda Science Foundation, Osaka; a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and a grant from the Ministry of Health, Labour, and Welfare of Japan, Tokyo.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol. 2007;25:587–617.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen JI, Kimura H, Nakamura S, Ko YH, Jaffe ES. Epstein–Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8–9 September 2008. Ann Oncol. 2009;20:1472–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Okano M, Kawa K, Kimura H, Yachie A, Wakiguchi H, Maeda A, Imai S, Ohga S, Kanegane H, Tsuchiya S, Morio T, Mori M, Yokota S, Imashuku S. Proposed guidelines for diagnosing chronic active Epstein–Barr virus infection. Am J Hematol. 2005;80:64–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Kimura H, Hoshino Y, Hara S, Sugaya N, Kawada J, Shibata Y, Kojima S, Nagasaka T, Kuzushima K, Morishima T. Differences between T cell-type and natural killer cell-type chronic active Epstein–Barr virus infection. J Infect Dis. 2005;191:531–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Gupta G, Man I, Kemmett D. Hydroa vacciniforme: a clinical and follow-up study of 17 cases. J Am Acad Dermatol. 2000;42:208–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen HH, Hsiao CH, Chiu HC. Hydroa vacciniforme-like primary cutaneous CD8-positive T-cell lymphoma. Br J Dermatol. 2002;147:587–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Iwatsuki K, Xu Z, Takata M, Iguchi M, Ohtsuka M, Akiba H, Mitsuhashi Y, Takenoshita H, Sugiuchi R, Tagami H, Kaneko F. The association of latent Epstein–Barr virus infection with hydroa vacciniforme. Br J Dermatol. 1999;140:715–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Cho KH, Lee SH, Kim CW, Jeon YK, Kwon IH, Cho YJ, Lee SK, Suh DH, Chung JH, Yoon TY, Lee SJ. Epstein–Barr virus-associated lymphoproliferative lesions presenting as a hydroa vacciniforme-like eruption: an analysis of six cases. Br J Dermatol. 2004;151:372–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Iwatsuki K, Satoh M, Yamamoto T, Oono T, Morizane S, Ohtsuka M, Xu ZG, Suzuki D, Tsuji K. Pathogenic link between hydroa vacciniforme and Epstein–Barr virus-associated hematologic disorders. Arch Dermatol. 2006;142:587–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Kimura H, Miyake K, Yamauchi Y, Nishiyama K, Iwata S, Iwatsuki K, Gotoh K, Kojima S, Ito Y, Nishiyama Y. Identification of Epstein–Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. J Infect Dis. 2009;200:1078–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, Naoe T, Esaki S, Kikuta A, Sawada A, Kawa K, Ohshima K, Nakamura S. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Hirai Y, Yamamoto T, Kimura H, Ito Y, Tsuji K, Miyake T, Morizane S, Suzuki D, Fujii K, Iwatsuki K. Hydroa vacciniforme is associated with increased numbers of Epstein–Barr virus-infected γδ T Cells. J Invest Dermatol. 2012;132:1401–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka C, Hasegawa M, Fujimoto M, Iwatsuki K, Yamamoto T, Yamada K, Kawa K, Saikawa Y, Toga A, Mase S, Wada T, Takehara K, Yachie A. Phenotypic analysis in a case of hydroa vacciniforme-like eruptions associated with chronic active Epstein–Barr virus disease of γδ T cells. Br J Dermatol. 2012;166:216–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Toga A, Wada T, Sakakibara Y, Mase S, Araki R, Tone Y, Toma T, Kurokawa T, Yanagisawa R, Tamura K, Nishida N, Taneichi H, Kanegane H, Yachie A. Clinical significance of cloned expansion and CD5 down-regulation in Epstein–Barr virus (EBV)-infected CD8+ T lymphocytes in EBV-associated hemophagocytic lymphohistiocytosis. J Infect Dis. 2010;201:1923–32.PubMedCrossRefGoogle Scholar
  15. 15.
    de Villartay JP, Lim A, Al-Mousa H, Dupont S, Dechanet-Merville J, Coumau-Gatbois E, Gougeon ML, Lemainque A, Eidenschenk C, Jouanguy E, Abel L, Casanova JL, Fischer A, Le Deist F. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Invest. 2005;115:3291–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Ehl S, Schwarz K, Enders A, Duffner U, Pannicke U, Kuhr J, Mascart F, Schmitt-Graeff A, Niemeyer C, Fisch P. A variant of SCID with specific immune responses and predominance of γδ T cells. J Clin Invest. 2005;115:3140–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Wada T, Schurman SH, Otsu M, Garabedian EK, Ochs HD, Nelson DL, Candotti F. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA. 2001;98:8697–702.PubMedCrossRefGoogle Scholar
  18. 18.
    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.PubMedCrossRefGoogle Scholar
  19. 19.
    Quintanilla-Martinez L KH, Jaffe ES. EBV-positive T-cell lymphoproliferative disorders of childhood. Geneva, Switzerland: World Health Organization, 2008.Google Scholar
  20. 20.
    Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X, Michelson S, Meric C, Hallet MM, Kourilsky P, Potaux L, Bonneville M, Moreau JF. Implication of γδ T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999;103:1437–49.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Brien RL, Roark CL, Jin N, Aydintug MK, French JD, Chain JL, Wands JM, Johnston M, Born WK. γδ T-cell receptors: functional correlations. Immunol Rev. 2007;215:77–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Morita CT, Parker CM, Brenner MB, Band H. TCR usage and functional capabilities of human gamma delta T cells at birth. J Immunol. 1994;153:3979–88.PubMedGoogle Scholar
  23. 23.
    Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D, Strominger JL, Brenner MB. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med. 1990;171:1597–612.PubMedCrossRefGoogle Scholar
  24. 24.
    Oyoshi MK, Nagata H, Kimura N, Zhang Y, Demachi A, Hara T, Kanegane H, Matsuo Y, Yamaguchi T, Morio T, Hirano A, Shimizu N, Yamamoto K. Preferential expansion of Vγ9-JγP/Vδ2-Jδ3 γδ T cells in nasal T-cell lymphoma and chronic active Epstein–Barr virus infection. Am J Pathol. 2003;162:1629–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Komori HK, Meehan TF, Havran WL. Epithelial and mucosal gamma delta T cells. Curr Opin Immunol. 2006;18:534–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Verneuil L, Gouarin S, Comoz F, Agbalika F, Creveuil C, Varna M, Vabret A, Janin A, Leroy D. Epstein–Barr virus involvement in the pathogenesis of hydroa vacciniforme: an assessment of seven adult patients with long-term follow-up. Br J Dermatol. 2010;163:174–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshimasu T, Nishide T, Seo N, Hiroi A, Ohtani T, Uede K, Furukawa F. Susceptibility of T cell receptor-alpha chain knock-out mice to ultraviolet B light and fluorouracil: a novel model for drug-induced cutaneous lupus erythematosus. Clin Exp Immunol. 2004;136:245–54.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2012

Authors and Affiliations

  • Taizo Wada
    • 1
  • Akiko Toga
    • 1
  • Yasuhisa Sakakibara
    • 1
  • Tomoko Toma
    • 1
  • Minoru Hasegawa
    • 2
  • Kazuhiko Takehara
    • 2
  • Tomonari Shigemura
    • 3
  • Kazunaga Agematsu
    • 4
  • Akihiro Yachie
    • 1
  1. 1.Department of Pediatrics, School of MedicineInstitute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
  2. 2.Department of Dermatology, School of MedicineInstitute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
  3. 3.Department of PediatricsShinshu University School of MedicineMatsumotoJapan
  4. 4.Department of Infection and Host DefenseShinshu University School of MedicineMatsumotoJapan

Personalised recommendations