International Journal of Hematology

, Volume 96, Issue 3, pp 342–349 | Cite as

Acute myeloid leukemia in clinical practice: a retrospective population-based cohort study in Miyazaki Prefecture, Japan

  • Takuya Matsunaga
  • Kiyoshi Yamashita
  • Yoko Kubuki
  • Takanori Toyama
  • Osamu Imataki
  • Kouichi Maeda
  • Noriaki Kawano
  • Seiichi Satou
  • Hiroshi Kawano
  • Junzo Ishizaki
  • Shuro Yoshida
  • Takuro Kameda
  • Tadashi Sasaki
  • Masaaki Sekine
  • Ayako Kamiunten
  • Yasuhiro Taniguchi
  • Tomonori Hidaka
  • Keiko Katayose
  • Haruko K-Shimoda
  • Kotaro Shide
  • Shojiro Yamamoto
  • Hiroshi Moritake
  • Hiroyuki Nunoi
  • Shigeyoshi Makino
  • Akira Kitanaka
  • Hitoshi Matsuoka
  • Kazuya Shimoda
Original Article

Abstract

We performed a retrospective population-based cohort study of acute myeloid leukemia (AML) in Miyazaki Prefecture, Japan. Over 6 years, we diagnosed 221 patients (211 adults and 10 children) with AML, indicating an incidence of AML in Miyazaki Prefecture of 3.2 per 100,000 per year. In 193 adult patients with non-acute promyelocytic leukemia (APL), the proportion of patients with myelodysplasia, unfavorable risk karyotypes, antecedent hematologic diseases, prior chemotherapy for other malignancies, and small proportion of blasts in the marrow was higher in patients ≥65 years, and patients with poor performance status (PS) and higher WBC counts at diagnosis were more prevalent among patients ≥75 years. One-third of the adult non-APL patients met the inclusion criteria usually applied in clinical trials: de novo AML, age ≤64 years with PS 0–2 and no key organ dysfunction. The 5-year overall survival (OS) rate of adult non-APL patients was 21.1 % (patients ≤64 years, 33.8 %; 65–74 years, 21.6 %; ≥75 years, 0 %). Multivariate analysis revealed that French-American-British subtypes M0, M6, and M7, poor PS (3, 4), unfavorable risk karyotypes, and higher WBC counts at diagnosis were independent adverse prognostic factors associated with OS. This analysis provides real world data.

Keywords

Acute myeloid leukemia (AML) Population-based study Clinical practice 

Supplementary material

12185_2012_1146_MOESM1_ESM.tif (61 kb)
Supplemental Fig. 1. Negative correlation between performance status and intensity of induction chemotherapy in 108 non-acute promyelocytic leukemia patients aged ≥ 65 years. No shading, intensive chemotherapy; gray shading, less intensive chemotherapy; black shading, best supportive care (TIFF 60 kb)
12185_2012_1146_MOESM2_ESM.tif (60 kb)
Supplemental Fig. 2. Kaplan–Meier estimate of overall survival in 46 non-acute promyelocytic leukemia patients aged ≥ 70 years with PS 0–2 categorized by intensity of induction chemotherapy. Black line, intensive chemotherapy; gray line, less intensive chemotherapy (TIFF 59 kb)
12185_2012_1146_MOESM3_ESM.tif (71 kb)
Supplemental Table 1 (TIFF 71 kb)

References

  1. 1.
    Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, Okumura H, Miyamura K, Nakaseko C, Miyazaki Y, Fujieda A, Nagai T, Yamane T, Taniwaki M, Takahashi M, Yagasaki F, Kimura Y, Asou N, Sakamaki H, Handa H, Honda S, Ohnishi K, Naoe T, Ohno R. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute leukemia: the JALSG AML201 Study. Blood. 2011;117:2358–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Burnett AK. The treatment of AML: current status and novel approaches. Hematology. 2005;10(Suppl 1):50–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Hutchins LF, Unger JM, Crowley JJ, Coltman CA, Albain KS. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N Engl J Med. 1999;341:2061–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Mauritzson N, Johansson B, Albin M, Billstrom R, Ahlgren T, Mikoczy Z, et al. A single-center population-based consecutive series of 1500 cytogenetically investigated adult hematological malignancies: karyotypic features in relation to morphology, age and gender. Eur J Haematol. 1999;62:95–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Juliusson G, Antunovic P, Derolf A, Lehmann S, Mollgard L, Stockelberg D, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009;113:4179–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Taylor PR, Reid MM, Stark AN, Bown N, Hamilton PJ, Proctor SJ. De novo acute myeloid leukaemia in patients over 55-years-old: a population-based study of incidence, treatment and outcome. Northern Region Haematology Group. Leukemia. 1995;9:231–7.PubMedGoogle Scholar
  7. 7.
    Bhayat F, Das-Gupta E, Smith C, McKeever T, Hubbard R. The incidence of and mortality from leukaemias in the UK: a general population-based study. BMC Cancer. 2009;9:252.PubMedCrossRefGoogle Scholar
  8. 8.
    Phekoo KJ, Richards MA, Moller H, Schey SA. The incidence and outcome of myeloid malignancies in 2,112 adult patients in southeast England. Haematologica. 2006;91:1400–4.PubMedGoogle Scholar
  9. 9.
    Pulte D, Gondos A, Brenner H. Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica. 2008;93:594–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakase K, Bradstock K, Sartor M, Gottlieb D, Byth K, Kita K, et al. Geographic heterogeneity of cellular characteristics of acute myeloid leukemia: a comparative study of Australian and Japanese adult cases. Leukemia. 2000;14:163–8.PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    BCSH. Guidelines. http://www.bcshguidelines.com/guidelinesMENU.asp. Accessed Aug 28 2010.
  13. 13.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.PubMedGoogle Scholar
  14. 14.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96:4075–83.PubMedGoogle Scholar
  15. 15.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Cox D. Logistic regression for binary response variables. London: Champman & Hall; 1989. p. 33–43.Google Scholar
  17. 17.
    Grambsch PTT. Proportional hazard tests and diagnostic based on weighted residuals. Biometrika. 1994;81:515–26.CrossRefGoogle Scholar
  18. 18.
    SEER. Cancer statistics review 1975–2006. http://seer.cancer.gov. Accessed Aug 28 2010.
  19. 19.
    Asou N, Adachi K, Tamura J, Kanamaru A, Kageyama S, Hiraoka A, et al. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. J Clin Oncol. 1998;16:78–85.PubMedGoogle Scholar
  20. 20.
    Sanz MA, Vellenga E, Rayon C, Diaz-Mediavilla J, Rivas C, Amutio E, et al. All-trans retinoic acid and anthracycline monochemotherapy for the treatment of elderly patients with acute promyelocytic leukemia. Blood. 2004;104:3490–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, et al. Age and acute myeloid leukemia. Blood. 2006;107:3481–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1312–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Moorman AV, Roman E, Willett EV, Dovey GJ, Cartwright RA, Morgan GJ. Karyotype and age in acute myeloid leukemia. Are they linked? Cancer Genet Cytogenet. 2001;126:155–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Schoch C, Kern W, Krawitz P, Dugas M, Schnittger S, Haferlach T, et al. Dependence of age-specific incidence of acute myeloid leukemia on karyotype. Blood. 2001;98:3500.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferrara F, Annunziata M, Copia C, Magrin S, Mele G, Mirto S. Therapeutic options and treatment results for patients over 75 years of age with acute myeloid leukemia. Haematologica. 1998;83:126–31.PubMedGoogle Scholar
  26. 26.
    Iwakiri R, Ohta M, Mikoshiba M, Tsutsumi H, Kumakawa T, Mori M. Prognosis of elderly patients with acute myelogenous leukemia: analysis of 126 AML cases. Int J Hematol. 2002;75:45–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Erba HP. Prognositic factors in elderly patients with AML and the implications for treatment. In: American Society of Hematology Education Program Book; 2007. p. 420–428.Google Scholar
  28. 28.
    Zittoun RA, Mandelli F, Willemze R, de Witte T, Labar B, Resegotti L, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) Leukemia Cooperative Groups. N Engl J Med. 1995;332:217–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Burnett AK, Wheatley K, Goldstone AH, Stevens RF, Hann IM, Rees JH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol. 2002;118:385–400.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakamaki H, Miyawaki S, Ohtake S, Emi N, Yagasaki F, Mitani K, et al. Allogeneic stem cell transplantation versus chemotherapy as post-remission therapy for intermediate or poor risk adult acute myeloid leukemia: results of the JALSG AML97 study. Int J Hematol. 2010;91:284–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Miyawaki S, Ohtake S, Fujisawa S, Kiyoi H, Shinagawa K, Usui N, et al. A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 Study. Blood. 2011;117:2366–72Google Scholar

Copyright information

© The Japanese Society of Hematology 2012

Authors and Affiliations

  • Takuya Matsunaga
    • 1
    • 4
  • Kiyoshi Yamashita
    • 2
  • Yoko Kubuki
    • 1
  • Takanori Toyama
    • 3
  • Osamu Imataki
    • 4
  • Kouichi Maeda
    • 5
  • Noriaki Kawano
    • 2
  • Seiichi Satou
    • 6
  • Hiroshi Kawano
    • 7
  • Junzo Ishizaki
    • 8
  • Shuro Yoshida
    • 2
  • Takuro Kameda
    • 1
  • Tadashi Sasaki
    • 3
  • Masaaki Sekine
    • 1
  • Ayako Kamiunten
    • 1
  • Yasuhiro Taniguchi
    • 1
  • Tomonori Hidaka
    • 1
  • Keiko Katayose
    • 1
  • Haruko K-Shimoda
    • 1
  • Kotaro Shide
    • 1
  • Shojiro Yamamoto
    • 1
  • Hiroshi Moritake
    • 9
  • Hiroyuki Nunoi
    • 9
  • Shigeyoshi Makino
    • 2
  • Akira Kitanaka
    • 1
  • Hitoshi Matsuoka
    • 7
  • Kazuya Shimoda
    • 1
  1. 1.Department of Gastroenterology and Hematology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
  2. 2.Miyazaki Prefectural Miyazaki HospitalMiyazakiJapan
  3. 3.Miyazaki Prefectural Nobeoka HospitalNobeokaJapan
  4. 4.Division of Endocrinology and Metabolism, Hematology, Rheumatology and Respiratory Medicine, Department of Internal MedicineKagawa UniversityKagawaJapan
  5. 5.Miyakonojo National HospitalMiyakonojoJapan
  6. 6.Fujimoto Hayasuzu HospitalMiyakonojoJapan
  7. 7.Koga General HospitalMiyazakiJapan
  8. 8.Miyazaki Prefectural Nichinan HospitalNichinanJapan
  9. 9.Division of Pediatrics, Department of Reproductive and Developmental Medicine, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan

Personalised recommendations