International Journal of Hematology

, Volume 95, Issue 6, pp 617–623

Generation of mature hematopoietic cells from human pluripotent stem cells

Progress in Hematology Disease modeling and treatment by iPS cells


A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.


hiPSCs hESCs HSC Hematopoietic cells RBCs 


  1. 1.
    Thomas ED. Bone marrow transplantation: a review. Semin Hematol. 1999;36:95–103.PubMedGoogle Scholar
  2. 2.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;25(126):663–76.CrossRefGoogle Scholar
  4. 4.
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu J, Vodyanik MA, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95:1651–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10:915–29.PubMedGoogle Scholar
  8. 8.
    Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood. 2011;117:e109–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodriguez-Piza I, Vassena R, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell. 2009;5:353–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117:4773–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Moore MA, Shieh JH, Lee G. Hematopoietic cells. Methods Enzymol. 2006;418:208–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Park SW, Jun Koh Y, Jeon J, Cho YH, Jang MJ, Kang Y. Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood. 2010;116:5762–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105:617–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood. 2006;108:2095–105.PubMedCrossRefGoogle Scholar
  15. 15.
    Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27:559–67.PubMedGoogle Scholar
  16. 16.
    Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells. 2010;28:704–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Niwa A, Umeda K, Chang H, Saito M, Okita K, Takahashi K, et al. Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemoangiogenic progenitors. J Cell Physiol. 2009;221:367–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Y, Umeda K, Nakayama N. Collaboration between WNT and BMP signaling promotes hemoangiogenic cell development from human fibroblast-derived iPS cells. Stem Cell Res. 2010;4:223–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Chang KH, Bonig H, Papayannopoulou T. Generation and characterization of erythroid cells from human embryonic stem cells and induced pluripotent stem cells: an overview. Stem Cells Int. 2011;2011:791604.PubMedGoogle Scholar
  20. 20.
    Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 2006;34:1635–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20:1639–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood. 2008;112:4475–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Bruno S, Gunetti M, Gammaitoni L, Dane A, Cavalloni G, Sanavio F, et al. In vitro and in vivo megakaryocyte differentiation of fresh and ex vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica. 2003;88:379–87.PubMedGoogle Scholar
  24. 24.
    Sullenbarger B, Bahng JH, Gruner R, Kotov N, Lasky LC. Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol. 2009;37:101–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost. 2006;4:436–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med. 2010;207:2817–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu SJ, Li F, Yin H, Feng Q, Kimbrel EA, Hahm E, et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res. 2011;21:530–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Palucka AK, Ueno H, Connolly J, Kerneis-Norvell F, Blanck JP, Johnston DA, et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother. 2006;29:545–57.PubMedCrossRefGoogle Scholar
  29. 29.
    Tseng SY, Nishimoto KP, Silk KM, Majumdar AS, Dawes GN, Waldmann H, et al. Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regen Med. 2009;4:513–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhan X, Dravid G, Ye Z, Hammond H, Shamblott M, Gearhart J, et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet. 2004;364:163–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Choi KD, Vodyanik MA, Slukvin II. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived linCD34+CD43+CD45+ progenitors. J Clin Invest. 2009;119:2818–29.PubMedCrossRefGoogle Scholar
  32. 32.
    Su Z, Frye C, Bae KM, Kelley V, Vieweg J, et al. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res. 2008;14:6207–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 2009;113:6094–101.PubMedCrossRefGoogle Scholar
  35. 35.
    Ni Z, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, et al. Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms. J Virol. 2011;85:43–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Saeki K, Saeki K, Nakahara M, Matsuyama S, Nakamura N, Yogiashi Y, et al. A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells. 2009;27:59–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Morishima T, Watanabe K, Niwa A, Fujino H, Matsubara H, Adachi S, et al. Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol. 2011;226:1283–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Carpenter L, Malladi R, Yang CT, French A, Pilkington KJ, Forsey RW, et al. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood. 2011;117:4008–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R, et al. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103:11742–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Galic Z, Kitchen SG, Subramanian A, Bristol G, Marsden MD, Balamurugan A, et al. Generation of T lineage cells from human embryonic stem cells in a feeder free system. Stem Cells. 2009;27:100–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol. 2009;182:6879–88.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2012

Authors and Affiliations

  1. 1.National Primate Research CenterUniversity of Wisconsin Graduate SchoolMadisonUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of Wisconsin Medical SchoolMadisonUSA
  3. 3.Department of Pharmacology, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations