International Journal of Hematology

, Volume 95, Issue 2, pp 167–175

Fyn is not essential for Bcr-Abl-induced leukemogenesis in mouse bone marrow transplantation models

  • Noriko Doki
  • Jiro Kitaura
  • Tomoyuki Uchida
  • Daichi Inoue
  • Yuki Kagiyama
  • Katsuhiro Togami
  • Masamichi Isobe
  • Shinichi Ito
  • Akie Maehara
  • Kumi Izawa
  • Naoko Kato
  • Toshihiko Oki
  • Yuka Harada
  • Fumio Nakahara
  • Hironori Harada
  • Toshio Kitamura
Original Article

Abstract

The Bcr-Abl oncogene causes human Philadelphia chromosome-positive (Ph+) leukemias, including B-cell acute lymphoblastic leukemia (B-ALL) and chronic myeloid leukemia (CML) with chronic phase (CML-CP) to blast crisis (CML-BC). Previous studies have demonstrated that Src family kinases are required for the induction of B-ALL, but not for CML, which is induced by Bcr-Abl in mice. In contrast, it has been reported that Fyn is up-regulated in human CML-BC compared with CML-CP, implicating Fyn in the blast crisis transition. Here, we aimed to delineate the exact role of Fyn in the induction/progression of Ph+ leukemias. We found that Fyn is expressed in mouse hematopoietic cells at varying stages of development, including c-kit+Sca-1+Lin cells. Notably, Fyn is highly expressed in some of human lymphomas, but not in human Ph+ leukemias including CML-BC. In mouse bone marrow transplantation models, mice transplanted with wild-type or Fyn-deficient bone marrow cells transduced with Bcr-Abl showed no differences in the development of B-ALL or CML-like diseases. Similarly, Fyn deficiency failed to impact the development of myeloid CML-BC induced by Bcr-Abl and Hes1. Elevated expression of Fyn was not found in mouse samples of Bcr-Abl-mediated CML- and CML-BC-like diseases. Thus, Fyn is not required for the pathogenesis of Bcr-Abl-mediated leukemias.

Keywords

Ph+ leukemias Bcr-Abl Fyn 

References

  1. 1.
    Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999;340:1330–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346:645–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Etten RA. Oncogenic signaling: new insights and controversies from chronic myeloid leukemia. J Exp Med. 2007;204:461–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Maru Y. Molecular biology of chronic myeloid leukemia. Int J Hematol. 2001;73:308–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen Y, Peng C, Sullvan C, Li D, Li S. Critical molecular pathway in cancer stem cells of chronic myeloid leukemia. Leukemia. 2010;24:1545–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakahara F, Sakata-Yanagimoto M, Komeno Y, Kato N, Uchida T, Haraguchi K, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010;115:2872–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D, et al. Requirement of Src kinase Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36:453–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph + leukemia in mice. Proc Natl Acad Sci USA. 2006;103:16870–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Tauchi T, Ohyashiki K. The second generation of BCR-ABL tyrosine kinase inhibitors. Int J Hematol. 2006;83:294–300.PubMedCrossRefGoogle Scholar
  10. 10.
    Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med. 2004;10:1187–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Danhauser-Riedl S, Warmuth M, Druker BJ, Emmerich B, Hallek M. Activation of Src kinase p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. 1996;56:3589–96.PubMedGoogle Scholar
  12. 12.
    Warmuth M, Bergmann M, Priess A, Häuslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem. 1997;272:33260–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003;101:690–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases Lck and Fyn on T cell differentiation, survival and activation. Immunol Rev. 2003;191:107–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Li S. Src kinase signaling in leukemia. Int J Biochem Cell Biol. 2007;39:1483–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Ban K, Gao Y, Amin HM, Howard A, Miller C, Lin Q, et al. BCR-ABL1 mediated up-regulation of Fyn in chronic myelogenous leukemia. Blood. 2008;111:2904–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103:2794–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Yagi T, Shigetani Y, Okado N, Tokunaga T, Ikawa Y, Aizawa S. Regional localization of Fyn in adult brain; studies with mice in which fyn gene was replaced by lacZ. Oncogene. 1993;8:3343–51.PubMedGoogle Scholar
  19. 19.
    Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T. Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol Cell Neurosci. 2008;38:203–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 2000;7:1063–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.PubMedGoogle Scholar
  22. 22.
    Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y, et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood. 2008;111:4297–308.PubMedCrossRefGoogle Scholar
  23. 23.
    Kato N, Kitaura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K, et al. Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood. 2011;117:221–33.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  • Noriko Doki
    • 1
  • Jiro Kitaura
    • 1
  • Tomoyuki Uchida
    • 1
  • Daichi Inoue
    • 1
  • Yuki Kagiyama
    • 1
  • Katsuhiro Togami
    • 1
  • Masamichi Isobe
    • 1
  • Shinichi Ito
    • 1
  • Akie Maehara
    • 1
  • Kumi Izawa
    • 1
  • Naoko Kato
    • 1
  • Toshihiko Oki
    • 1
    • 2
  • Yuka Harada
    • 3
  • Fumio Nakahara
    • 1
  • Hironori Harada
    • 4
  • Toshio Kitamura
    • 1
    • 2
  1. 1.Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
  2. 2.Division of Stem Cell Signaling, The Institute of Medical ScienceThe University of TokyoTokyoJapan
  3. 3.Division of Hematology, Department of Internal MedicineKeio University School of MedicineTokyoJapan
  4. 4.International Radiation Information Center, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan

Personalised recommendations