Advertisement

International Journal of Hematology

, Volume 95, Issue 1, pp 86–94 | Cite as

Impaired regulatory T cell reconstitution in patients with acute graft-versus-host disease and cytomegalovirus infection after allogeneic bone marrow transplantation

  • Alain M. Ngoma
  • Kazuhiko IkedaEmail author
  • Yuko Hashimoto
  • Kazuhiro Mochizuki
  • Hiroshi Takahashi
  • Hideki Sano
  • Hayato Matsumoto
  • Hideyoshi Noji
  • Syunnichi Saito
  • Atsushi Kikuta
  • Kazuei Ogawa
  • Mikio Ohtsuka
  • Masafumi Abe
  • Kenneth E. Nollet
  • Hitoshi Ohto
Original Article

Abstract

To elucidate the correlation between regulatory T cells (Tregs) and acute graft-versus-host disease (aGVHD) or cytomegalovirus infection following allogeneic bone marrow transplantation (allo-BMT), we evaluated either CD4+CD25high or FOXP3+ Treg-enriched cells in peripheral blood (PB) from 20 patients who received allo-BMT, and in biopsies of skin with aGVHD. Proportions of CD4+CD25highFOXP3+ cells in total lymphocytes, but not other types of T cells, were lower in patients who eventually developed grades II–IV aGVHD (n = 13) than in others (n = 7, P < 0.001). Proportions of CD62L+ cells in CD4+CD25high cells at day +30 were lower (P < 0.01) in patients who eventually showed cytomegalovirus viremia (n = 6) than in others (n = 14). Incidence of aGVHD (P < 0.05) or cytomegalovirus viremia (P < 0.05) was higher in patients without these complications, but with lower proportions of PB CD4+CD25highFOXP3+ cells at day +30 (n = 8) than in others (n = 8). However, in skin with aGVHD (n = 5), there was marked or slightly increased infiltration of CD8+ cells (P < 0.001) or CD3+FOXP3+ cells (P < 0.05), respectively, when compared with control (n = 5), resulting in threefold higher ratio of CD8+/CD3+FOXP3+ cells in aGVHD relative to controls (P < 0.05). Thus, impaired reconstitution of Tregs may be associated with aGVHD and CMV infection. Moreover, imbalance of Tregs and CD8+ cells may play a role in aGVHD tissue.

Keywords

Allogeneic bone marrow transplantation Regulatory T cells Tissue Acute GVHD Cytomegalovirus 

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Gratwohl A, Brand R, Apperley J, Biezen Av A, Bandini G, Devergie A, et al. Graft-versus-host disease and outcome in HLA-identical sibling transplantations for chronic myeloid leukemia. Blood. 2002;100:3877–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Vogelsang GB, Lee L, Bensen-Kennedy DM. Pathogenesis and treatment of graft-versus-host disease after bone marrow transplant. Annu Rev Med. 2003;54:29–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrara JL. Pathogenesis of acute graft-versus-host disease: cytokines and cellular effectors. J Hematother Stem Res. 2000;9:299–306.CrossRefGoogle Scholar
  4. 4.
    Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007;25:139–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMedGoogle Scholar
  6. 6.
    Powrie F, Mason D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med. 1990;172:1701–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced by elimination of T cell subset: Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med. 1985;161:72–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3. Science. 2003;299:1057–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Fontenot JD, Gavin MA, Rudensky AY. FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:337–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Thorton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164:183–90.Google Scholar
  12. 12.
    Sakaguchi S. Regulatory T cells: Key controllers of immunologic self-tolerance. Cell. 2000;101:455–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420:502–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol. 2004;16:157–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med. 2002;196:401–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99:3493–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood. 2005;105:2220–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE, Levine BL, et al. l-Selectin(hi) but not the l-selectin(lo) CD4+CD25+ regulatory T cells are potent inhibitors of GVHD and BM graft rejection. Blood. 2004;104:3804–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med. 2005;201:1037–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, et al. Critical role of CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood. 2005;106:3300–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M, et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood. 2004;103:2410–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Miura Y, Thoburn CJ, Bright EC, Phelps ML, Shin T, Matsui EC, et al. Association of Foxp3 regulatory T cells gene expression with graft-versus-host disease. Blood. 2004;104:2187–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Martin PJ, Pei J, Gooley T, Anasetti C, Appelbaum FR, Deeg J, et al. Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Biol Blood Marrow Transplant. 2004;10:552–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Stanzani M, Martins SL, Saliba RM, St John LS, Bryan S, Couriel D, et al. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood. 2004;103:1140–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S, et al. Reduced frequency of FOXP3+CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005;106:2903–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Meignin V, Peffault de Latour R, Zuber J, Régnault A, Mounier N, Lemaître F, et al. Numbers of Foxp3-expressing CD4+CD25high T cells do not correlate with the establishment of long-term tolerance after allogeneic stem cell transplantation. Exp Hematol. 2005;33:894–900.PubMedCrossRefGoogle Scholar
  27. 27.
    Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.PubMedGoogle Scholar
  28. 28.
    Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, et al. IBMTR severity index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97:855–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Kurihara T, Hayashi J, Ito A, Asai T. CMV antigenemia assay using indirect ALP-immunostaining in bone marrow transplant recipients. Transplant Proc. 1996;28:1750–3.PubMedGoogle Scholar
  30. 30.
    Magenau JM, Qin X, Tawara I, Rogers CE, Kitko C, Schlough M, et al. Frequency of CD4+CD25highFOXP3+ regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010;16:907–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Matsuoka K, Kim HT, McDonough S, Bascug G, Warshauer B, Koreth J, et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2010;120:1479–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Ratajczak P, Janin A, Peffault de Latour R, Leboeuf C, Desveaux A, et al. Th17/Treg ratio in human graft-versus-host disease. Blood. 2010;116:1165–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Rieger K, Loddenkemper C, Maul J, Fietz T, Wolff D, Terpe H, et al. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood. 2006;107:1717–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Pastore D, Delia M, Mestice A, Perrone T, Carluccio P, Gaudio F, Giordano A, Rossi AR, Ricco A, Leo M, Liso V, Specchia G. Recovery of CMV-specific CD8+ T cells and Tregs after allogeneic peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:550–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Le Blanc K, Barrett AJ, Schaffer M, Hägglund H, Ljungman P, Ringdén O, et al. Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol Blood Marrow Transplant. 2009;15:1108–15.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  • Alain M. Ngoma
    • 1
  • Kazuhiko Ikeda
    • 1
    • 2
    Email author
  • Yuko Hashimoto
    • 3
  • Kazuhiro Mochizuki
    • 4
  • Hiroshi Takahashi
    • 1
    • 2
  • Hideki Sano
    • 4
  • Hayato Matsumoto
    • 2
  • Hideyoshi Noji
    • 2
  • Syunnichi Saito
    • 1
  • Atsushi Kikuta
    • 4
  • Kazuei Ogawa
    • 2
  • Mikio Ohtsuka
    • 5
  • Masafumi Abe
    • 3
  • Kenneth E. Nollet
    • 1
  • Hitoshi Ohto
    • 1
  1. 1.Department of Transfusion Medicine and Transplantation ImmunologyFukushima Medical University School of MedicineFukushimaJapan
  2. 2.Department of Cardiology and HematologyFukushima Medical University School of MedicineFukushimaJapan
  3. 3.Department of Pathology and Diagnostic PathologyFukushima Medical University School of MedicineFukushimaJapan
  4. 4.Department of PediatricsFukushima Medical University School of MedicineFukushimaJapan
  5. 5.Department of DermatologyFukushima Medical University School of MedicineFukushimaJapan

Personalised recommendations