International Journal of Hematology

, Volume 94, Issue 5, pp 443–452

Antibody therapy for Adult T-cell leukemia–lymphoma

Progress in Hematology Memorial PIM: adult T-cell leukemia—from discovery to recent progress

Abstract

Adult T-cell leukemia–lymphoma (ATL) has a very poor prognosis. Since there currently are limited treatment options for ATL patients, several novel agents are being developed and tested clinically. Antibody therapy against ATL was initially started with interleukin-2 receptor α-subunit, CD25, as a target molecule in the late 1980s, and is currently ongoing. CC chemokine receptor 4 (CCR4) was postulated as a novel molecular target in ATL antibody therapy, and humanized anti-CCR4 mAb (KW-0761), whose Fc region was defucosylated to enhance antibody-dependent cellular cytotoxicity, was developed. A phase I study of KW-0761 in relapsed ATL and peripheral T-cell lymphoma was started in 2006, and a subsequent phase II study was completed in 2010. KW-0761 showed a clinically meaningful antitumor activity in patients with relapsed ATL, with an acceptable toxicity profile. The prognosis of ATL patients should be improved in the near future with clinical applications of novel treatment strategies, including those involving KW-0761 and other promising antibody therapies targeting CD25 or CD30.

Keywords

CCR4 CD25 ADCC KW-0761 

References

  1. 1.
    Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50:481–92.PubMedGoogle Scholar
  2. 2.
    Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, et al. Adult T cell leukemia: antigen in adult T-cell leukemia cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA. 1981;78:6476–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T cell leukemia and its implication in the disease. Proc Natl Acad Sci USA. 1982;79:2031–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79:428–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsukasaki K, Utsunomiya A, Fukuda H, Shibata T, Fukushima T, Takatsuka Y, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25:5458–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77:7415–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Gill PS, Harrington W Jr, Kaplan MH, Ribeiro RC, Bennett JM, Liebman HA, et al. Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med. 1995;332:1744–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Bazarbachi A, Plumelle Y, Carlos Ramos J, Tortevoye P, Otrock Z, Taylor G, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28:4177–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Ishitsuka K, Fukushima T, Tsukasaki K, Tobinai K. Is zidovudine and interferon-alfa the gold standard for adult T-cell leukemia-lymphoma? J Clin Oncol. 2010;28:e765.PubMedCrossRefGoogle Scholar
  10. 10.
    Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010;115:4337–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Utsunomiya A, Miyazaki Y, Takatsuka Y, Hanada S, Uozumi K, Yashiki S, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:15–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Fukushima T, Miyazaki Y, Honda S, Kawano F, Moriuchi Y, Masuda M, et al. Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia. 2005;19:829–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Okamura J, Utsunomiya A, Tanosaki R, Uike N, Sonoda S, Kannagi M, et al. Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma. Blood. 2005;105:4143–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Hishizawa M, Kanda J, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood. 2010;116:1369–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med. 2004;351:1860–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Satou Y, Nosaka K, Koya Y, Yasunaga JI, Toyokuni S, Matsuoka M. Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia. 2004;18:1357–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A, et al. Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci. 2009;100:341–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2001;346:235–42.CrossRefGoogle Scholar
  19. 19.
    Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Waldmann TA, Greene WC, Sarin PS, Saxinger C, Blayney DW, Blattner WA, et al. Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sézary leukemia, and their distinction using anti-Tac. Monoclonal antibody identifying the human receptor for T cell growth factor. J Clin Invest. 1984;73:1711–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Uchiyama T, Hori T, Tsudo M, Wano Y, Umadome H, Tamori S, et al. Interleukin-2 receptor (Tac antigen) expressed on adult T cell leukemia cells. J Clin Invest. 1985;76:446–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Waldmann TA, Goldman CK, Bongiovanni KF, Sharrow SO, Davey MP, Cease KB, et al. Therapy of patients with human T-cell lymphotrophic virus I-induced adult T-cell leukemia with anti-Tac, a monoclonal antibody to the receptor for interleukin-2. Blood. 1988;72:1805–16.PubMedGoogle Scholar
  23. 23.
    Waldmann TA, White JD, Goldman CK, Top L, Grant A, Bamford R, et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood. 1993;82:1701–12.PubMedGoogle Scholar
  24. 24.
    Waldmann TA. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene. 2007;26:3699–703.PubMedCrossRefGoogle Scholar
  25. 25.
    Dickman S. Antibodies stage a comeback in cancer treatment. Science. 1998;280:1196–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA. 1989;86:10029–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Waldmann TA, White JD, Carrasquillo JA, Reynolds JC, Paik CH, Gansow OA, et al. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood. 1995;86:4063–75.PubMedGoogle Scholar
  29. 29.
    Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18:1622–36.PubMedGoogle Scholar
  30. 30.
    Foss FM, Saleh MN, Krueger JG, Nichols JC, Murphy JR. Diphtheria toxin fusion proteins. Curr Top Microbiol Immunol. 1998;234:63–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, et al. Pivotal Phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88.PubMedGoogle Scholar
  32. 32.
    Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol. 2001;78:57–110.PubMedCrossRefGoogle Scholar
  33. 33.
    Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999;11:81–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J Exp Med. 2001;194:847–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2005;16:1643–56.CrossRefGoogle Scholar
  36. 36.
    Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res. 2006;66:5716–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci. 2006;97:1139–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99:1505–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9:3625–34.PubMedGoogle Scholar
  40. 40.
    Voso MT, Pantel G, Rutella S, Weis M, D’Alò F, Urbano R, et al. Rituximab reduces the number of peripheral blood B-cells in vitro mainly by effector cell-mediated mechanisms. Haematologica. 2002;87:918–25.PubMedGoogle Scholar
  41. 41.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6:443–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998;163:59–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(26):733–40.Google Scholar
  45. 45.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278:3466–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res. 2005;11:2327–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, et al. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43:1183–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res. 2006;12:2879–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Shibata-Koyama M, Iida S, Misaka H, Mori K, Yano K, Shitara K, et al. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol. 2009;37:309–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 2004;64:2127–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res. 2010;16:1520–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Ishida T, Iida S, Akatsuka Y, Ishii T, Miyazaki M, Komatsu H, et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-Cell leukemia/lymphoma. Clin Cancer Res. 2004;10:7529–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Yano H, Ishida T, Inagaki A, Ishii T, Ding J, Kusumoto S, et al. Defucosylated anti CC chemokine receptor 4 monoclonal antibody combined with immunomodulatory cytokines: a novel immunotherapy for aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res. 2007;13:6494–500.PubMedCrossRefGoogle Scholar
  54. 54.
    Ishida T, Ishii T, Inagaki A, Yano H, Kusumoto S, Ri M, et al. The CCR4 as a novel-specific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia. 2006;20:2162–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Yano H, Ishida T, Imada K, Sakai T, Ishii T, Inagaki A, et al. Augmentation of antitumour activity of defucosylated chimeric anti-CCR4 monoclonal antibody in SCID mouse model of adult T-cell leukaemia / lymphoma using G-CSF. Br J Haematol. 2008;140:586–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rcnull (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol. 2008;324:53–76.PubMedCrossRefGoogle Scholar
  58. 58.
    Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, et al. Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother. 2009;58:1195–206.PubMedCrossRefGoogle Scholar
  59. 59.
    Ito A, Ishida T, Utsunomiya A, Sato F, Mori F, Yano H, et al. Defucosylated anti-CCR4 monoclonal antibody exerts potent ADCC against primary ATLL cells mediated by autologous human immune cells in NOD/Shi-scid, IL-2R gamma(null) mice in vivo. J Immunol. 2009;183:4782–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamamoto K, Utsunomiya A, Tobinai K, Tsukasaki K, Uike N, Uozumi K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28:1591–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Tobinai K. Current management of adult T-cell leukemia/lymphoma. Oncology (Williston Park). 2009;14:1250–6.Google Scholar
  62. 62.
    Ishida T, Inagaki H, Utsunomiya A, Takatsuka Y, Komatsu H, Iida S, et al. CXCR3 and CCR4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10:5494–500.PubMedCrossRefGoogle Scholar
  63. 63.
    Ohshima K, Karube K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, et al. Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression: Analysis of prognosis. Int J Oncol. 2004;25:605–13.PubMedGoogle Scholar
  64. 64.
    Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol. 2006;6:295–307.PubMedCrossRefGoogle Scholar
  65. 65.
    Zou W. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Ishida T, Ueda R. Immunopathogenesis of lymphoma: focus on CCR4. Cancer Sci. 2011;102:44–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007;7:270–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR, et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood. 2010;116:1211–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27:453–9.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  1. 1.Department of Medical Oncology and ImmunologyNagoya City University Graduate School of Medical SciencesNagoyaJapan

Personalised recommendations