International Journal of Hematology

, Volume 93, Issue 2, pp 144–149

Ribosome defects in disorders of erythropoiesis

  • Anupama Narla
  • Slater N. Hurst
  • Benjamin L. Ebert
Progress in Hematology Seven wonders of erythropoiesis

Abstract

Over the past decade, genetic lesions that cause ribosome dysfunction have been identified in both congenital and acquired human disorders. These discoveries have established a new category of disorders, known as ribosomopathies, in which the primary pathophysiology is related to impaired ribosome function. The protoptypical disorders are Diamond–Blackfan anemia, a congenital bone marrow failure syndrome, and the 5q- syndrome, a subtype of myelodysplastic syndrome. In both of these disorders, impaired ribosome function causes a severe macrocytic anemia. In this review, we will discuss the evidence that defects in ribosomal biogenesis cause the hematologic phenotype of Diamond–Blackfan anemia and the 5q- syndrome. We will also explore the potential mechanisms by which a ribosomal defect, which would be expected to have widespread consequences, may lead to specific defects in erythropoiesis.

Keywords

Myelodysplastic syndrome Diamond–Blackfan anemia p53 

References

  1. 1.
    Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat Genet. 1999;21(2):169–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115(16):3196–205.CrossRefPubMedGoogle Scholar
  3. 3.
    Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 2008;451(7176):335–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Ebert BL. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia. 2009;23(7):1252–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Barlow JL, Drynan LF, Hewett DR, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med. 2010;16(1):59–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Lipton JM, Ellis SR. Diamond–Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009;23(2):261–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Josephs HW. Anaemia of infancy and early childhood. Medicine. 1936;15:307.CrossRefGoogle Scholar
  8. 8.
    Diamond LK, Blackfan KD. Hypoplastic anemia. Am J Dis Child. 1938;56:464.Google Scholar
  9. 9.
    Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond–Blackfan anemia. Am J Hum Genet. 2006;79(6):1110–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D. Ribosomal protein S17 gene (RPS17) is mutated in Diamond–Blackfan anemia. Hum Mutat. 2007;28(12):1178–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond–Blackfan anemia. Blood. 2008;112(5):1582–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond–Blackfan anemia patients. Am J Hum Genet. 2008;83(6):769–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond–Blackfan anemia. Hum Mutat. 2009;30(3):321–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Doherty L, Sheen MR, Vlachos A, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond–Blackfan anemia. Am J Hum Genet. 2010;86(2):222–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Flygare J, Kiefer T, Miyake K, et al. Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond–Blackfan anemia. Blood. 2005;105(12):4627–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Ebert BL, Lee MM, Pretz JL, et al. An RNA interference model of RPS19 deficiency in Diamond–Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone-responsive genes by microarray. Blood. 2005;105(12):4620–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Hamaguchi I, Ooka A, Brun A, Richter J, Dahl N, Karlsson S. Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond–Blackfan anemia. Blood. 2002;100(8):2724–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Danilova N, Sakamoto KM, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 2008;112(13):5228–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S, Kenmochi N. Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond–Blackfan anemia. Hum Mol Genet. 2008;17(20):3204–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Matsson H, Davey EJ, Frojmark AS, et al. Erythropoiesis in the Rps19 disrupted mouse: analysis of erythropoietin response and biochemical markers for Diamond–Blackfan anemia. Blood Cells Mol Dis. 2006;36(2):259–64.CrossRefPubMedGoogle Scholar
  21. 21.
    McGowan KA, Li JZ, Park CY, et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet. 2008;40(8):963–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Devlin EE, Dacosta L, Mohandas N, Elliott G, Bodine DM. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond–Blackfan anemia. Blood. 2010;116(15):2826–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Jaako PFJ, Olsson K, Quere R, Larsson J, Bryder D, Karlsson S. Chronic RPS19 deficiency leads to bone marrow failure in a mouse model for Diamond–Blackfan anemia. In: Oral session: bone marrow failure: genetics and pathogenetics. Abstract #193, 52nd ASH Annual Meeting and Exposition. Orlando, FL, 4–7 December, 2010. Google Scholar
  24. 24.
    Park CMK, Glader B, Barsh G, Weissman I. Haploinsufficiency of ribosomal protein S6 in mice mimics bone marrow failure syndromes in humans. In: Oral session: bone marrow failure: genetics and pathogenetics. Abstract #194. 52nd ASH Annual Meeting and Exposition, Orlando, FL, 4–7 December, 2010.Google Scholar
  25. 25.
    Van den Berghe H, Cassiman JJ, David G, Fryns JP, Michaux JL, Sokal G. Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature. 1974;251(5474):437–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.CrossRefPubMedGoogle Scholar
  27. 27.
    List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Pellagatti A, Hellstrom-Lindberg E, Giagounidis A, et al. Haploinsufficiency of RPS14 in 5q- syndrome is associated with deregulation of ribosomal- and translation-related genes. Br J Haematol. 2008;142(1):57–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Henras AK, Soudet J, Gerus M, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci. 2008;65(15):2334–59.CrossRefPubMedGoogle Scholar
  30. 30.
    Choesmel V, Bacqueville D, Rouquette J, et al. Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood. 2007;109(3):1275–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Flygare J, Aspesi A, Bailey JC, et al. Human RPS19, the gene mutated in Diamond–Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007;109(3):980–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Idol RA, Robledo S, Du HY, et al. Cells depleted for RPS19, a protein associated with Diamond–Blackfan anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis. 2007;39(1):35–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Choesmel V, Fribourg S, Aguissa-Toure AH, et al. Mutation of ribosomal protein RPS24 in Diamond–Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet. 2008;17(9):1253–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M. The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA. 2008;14(9):1918–29.CrossRefPubMedGoogle Scholar
  35. 35.
    Wool IG. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci. 1996;21(5):164–5.PubMedGoogle Scholar
  36. 36.
    Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins? Mol Cell. 2009;34(1):3–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16(5):369–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Constantinou C, Elia A, Clemens MJ. Activation of p53 stimulates proteasome-dependent truncation of eIF4E-binding protein 1 (4E-BP1). Biol Cell. 2008;100(5):279–89.CrossRefPubMedGoogle Scholar
  39. 39.
    Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275(12):8945–51.CrossRefPubMedGoogle Scholar
  40. 40.
    Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004;279(43):44475–82.CrossRefPubMedGoogle Scholar
  41. 41.
    Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol. 2004;24(17):7654–68.CrossRefPubMedGoogle Scholar
  42. 42.
    Jin A, Itahana K, O’Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol. 2004;24(17):7669–80.CrossRefPubMedGoogle Scholar
  43. 43.
    Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3(6):577–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang Y, Wolf GW, Bhat K, et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol. 2003;23(23):8902–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen D, Zhang Z, Li M, et al. Ribosomal protein S7 as a novel modulator of p53–MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene. 2007;26(35):5029–37.CrossRefPubMedGoogle Scholar
  46. 46.
    Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell. 2008;32(2):180–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Fumagalli S, Di Cara A, Neb-Gulati A, et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 2009;11(4):501–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Jones NC, Lynn ML, Gaudenz K, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med. 2008;14(2):125–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Treacher-Collins E. Case with symmetrical congenital notches in the outer part of each lower lid and defective development of the malar bones. Trans Opthalmol Soc UK. 1900;20:90.Google Scholar
  50. 50.
    Sakai D, Trainor PA. Treacher Collins syndrome: unmasking the role of Tcof1/treacle. Int J Biochem Cell Biol. 2009;41(6):1229–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. The Treacher Collins Syndrome Collaborative Group. Nat Genet. Feb 1996;12(2):130–6.Google Scholar
  52. 52.
    Dixon J, Jones NC, Sandell LL, et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci USA. 2006;103(36):13403–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Lajtha LG, Oliver R. A kinetic model of the erythron. Proc R Soc Med. 1961;54:369–71.PubMedGoogle Scholar
  54. 54.
    Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 2005;19(24):3070–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2010 [Epub ahead of print].Google Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  • Anupama Narla
    • 1
    • 2
    • 3
  • Slater N. Hurst
    • 2
  • Benjamin L. Ebert
    • 1
    • 2
    • 4
  1. 1.Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of MedicineChildren’s Hospital BostonBostonUSA
  4. 4.Harvard Stem Cell InstituteCambridgeUSA

Personalised recommendations