International Journal of Hematology

, Volume 93, Issue 1, pp 14–20

The molecular basis of iron overload disorders and iron-linked anemias

Progress in Hematology Seven wonders of erythropoiesis

Abstract

Iron homeostasis in vertebrates requires coordination between cells that export iron into plasma and those that utilize or store plasma iron. The coordination of iron acquisition and utilization is mediated by the interaction of the peptide hormone hepcidin and the iron exporter ferroportin. Hepcidin levels are increased during iron sufficiency and inflammation and are decreased in hypoxia or erythropoiesis. Hepcidin is a negative regulator of iron export. Hepcidin binds to cell surface ferroportin inducing ferroportin degradation and decreasing cellular iron export. Genetic disorders of iron overload of iron-linked anemia can be explained by changes in the level of hepcidin or ferroportin and of the ability of ferroportin to be internalized by hepcidin.

Keywords

Iron Hepcidin Ferroportin Anemia Overload 

References

  1. 1.
    Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol. 1998;35:35–54.PubMedGoogle Scholar
  2. 2.
    Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.CrossRefPubMedGoogle Scholar
  4. 4.
    De Domenico I, Nemeth E, Nelson JM, Phillips JD, Ajioka RS, Kay MS, Kushner JP, Ganz T, Ward DM, Kaplan J. The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab. 2008;8:146–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA. 2001;98:8780–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA. 2002;99:4596–601.CrossRefPubMedGoogle Scholar
  7. 7.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefPubMedGoogle Scholar
  8. 8.
    Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003;102:4191–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Troadec MB, Ward DM, Lo E, Kaplan J, De Domenico I. Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood. 2010;116:4657–64.Google Scholar
  10. 10.
    Marro S, Chiabrando D, Messana E, Stolte J, Turco E, Tolosano E, Muckenthaler MU. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position −7007 of the FPN1 promoter. Haematologica. 2010;95:1261–8.Google Scholar
  11. 11.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403:776–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200.CrossRefPubMedGoogle Scholar
  13. 13.
    Mao J, McKean DM, Warrier S, Corbin JG, Niswander L, Zohn IE. The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure. Development. 2010;137:3079–88.CrossRefPubMedGoogle Scholar
  14. 14.
    De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell. 2007;18:2569–78.CrossRefPubMedGoogle Scholar
  15. 15.
    De Domenico I, Ward DM, Nemeth E, Vaughn MB, Musci G, Ganz T, Kaplan J. The molecular basis of ferroportin-linked hemochromatosis. Proc Natl Acad Sci USA. 2005;102:8955–60.CrossRefPubMedGoogle Scholar
  16. 16.
    De Domenico I, Lo E, Ward DM, Kaplan J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci USA. 2009;106:3800–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Drakesmith H, Schimanski LM, Ormerod E, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, Bastin JM, Cowley D, Chinthammitr Y, Robson KJ, Townsend AR. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood. 2005;106:1092–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Schimanski LM, Drakesmith H, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, Bastin JM, Cowley D, Chinthammitr Y, Robson KJ, Townsend AR. In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Blood. 2005;105:4096–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu XB, Yang F, Haile DJ. Functional consequences of ferroportin 1 mutations. Blood Cells Mol Dis. 2005;35:33–46.CrossRefPubMedGoogle Scholar
  20. 20.
    McGregor JA, Shayeghi M, Vulpe CD, Anderson GJ, Pietrangelo A, Simpson RJ, McKie AT. Impaired iron transport activity of ferroportin 1 in hereditary iron overload. J Membr Biol. 2005;206:3–7.CrossRefPubMedGoogle Scholar
  21. 21.
    De Domenico I, Vaughn MB, Yoon D, Kushner JP, Ward DM, Kaplan J. Zebrafish as a model for defining the functional impact of mammalian ferroportin mutations. Blood. 2007;110:3780–3.CrossRefPubMedGoogle Scholar
  22. 22.
    De Domenico I, Ward DM, Musci G, Kaplan J. Evidence for the multimeric structure of ferroportin. Blood. 2007;109:2205–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Fernandes A, Preza GC, Phung Y, De Domenico I, Kaplan J, Ganz T, Nemeth E. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood. 2009;114:437–43.CrossRefPubMedGoogle Scholar
  24. 24.
    Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003;33:21–2.CrossRefPubMedGoogle Scholar
  25. 25.
    Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41:482–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Arndt S, Maegdefrau U, Dorn C, Schardt K, Hellerbrand C, Bosserhoff AK. Iron-induced expression of BMP6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterology. 2010;138:372–82.Google Scholar
  27. 27.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38:531–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, Trenor CC, Gasparini P, Andrews NC, Pietrangelo A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest. 2001;108:619–23.PubMedGoogle Scholar
  29. 29.
    Zohn IE, De Domenico I, Pollock A, Ward DM, Goodman JF, Liang X, Sanchez AJ, Niswander L, Kaplan J. The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood. 2007;109:4174–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Pietrangelo A. The ferroportin disease. Blood Cells Mol Dis. 2004;32:131–8.CrossRefPubMedGoogle Scholar
  31. 31.
    De Domenico I, Lo E, Ward DM, Kaplan J. Human mutation D157G in ferroportin leads to hepcidin-independent binding of Jak2 and ferroportin down-regulation. Blood. 2010;115:2956–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wallace DF, Harris JM, Subramaniam VN. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am J Physiol Cell Physiol. 2010;298:C75–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006;107:3727–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Koening CL, Miller JC, Nelson JM, Ward DM, Kushner JP, Bockenstedt LK, Weis JJ, Kaplan J, De Domenico I. Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood. 2009;114:1913–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA. 2005;102:1906–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, Khovananth K, Mudd S, Mann N, Moresco EM, Beutler E, Beutler B. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320:1088–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, Mayo MM, Samuel SM, Strouse JJ, Markianos K, Andrews NC, Fleming MD. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40:569–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Sarkar J, Seshadri V, Tripoulas NA, Ketterer ME, Fox PL. Role of ceruloplasmin in macrophage iron efflux during hypoxia. Role of ceruloplasmin in macrophage iron efflux during hypoxia. J. Biol Chem. 2003;278:44018–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA. 1999;96:10812–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Harris ZL. Aceruloplasminemia. J Neurol Sci. 2003;207:108–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Jeong SY, David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem. 2003;278:27144–8.CrossRefPubMedGoogle Scholar
  43. 43.
    De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26:2823–31.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  • Jerry Kaplan
    • 1
  • Diane M. Ward
    • 1
  • Ivana De Domenico
    • 2
  1. 1.Department of Pathology, School of MedicineUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUSA

Personalised recommendations