International Journal of Hematology

, Volume 93, Issue 1, pp 74–82 | Cite as

Telomeres and prognosis in patients with chronic lymphocytic leukaemia

  • Ludger Sellmann
  • Dirk de Beer
  • Marius Bartels
  • Bertram Opalka
  • Holger Nückel
  • Ulrich Dührsen
  • Jan Dürig
  • Marc Seifert
  • Dörte Siemer
  • Ralf Küppers
  • Gabriela M. Baerlocher
  • Alexander Röth
Original Article

Abstract

In the present study, telomere length, telomerase activity, the mutation load of immunoglobulin variable heavy chain (IGHV) genes, and established prognostic factors were investigated in 78 patients with chronic lymphocytic leukaemia (CLL) to determine the impact of telomere biology on the pathogenesis of CLL. Telomere length was measured by an automated multi-colour flow-FISH, and an age-independent delta telomere length (ΔTL) was calculated. CLL with unmutated IGHV genes was associated with shorter telomeres (p = 0.002). Furthermore, we observed a linear correlation between the frequency of IGHV gene mutations and elongation of telomeres (r = 0.509, p < 0.001). With respect to prognosis, a threshold ΔTL of −4.2 kb was the best predictor for progression-free and overall survival. ΔTL was not significantly altered over time or with therapy. The correlation between the mutational load in IGHV genes and the ΔTL in CLL might reflect the initial telomere length of the putative cell of origin (pre- versus post-germinal center B cells). In conclusion, the ΔTL is a reliable prognostic marker for patients with CLL. Short telomeres and high telomerase activity as occurs in some patients with CLL with a worse prognosis might be an ideal target for treatment with telomerase inhibitors.

Keywords

CLL Prognostic factors IGHV mutations Telomeres Telomerase 

Notes

Acknowledgments

We thank Anja Führer, Songül Basoglu, Barbara Friedmann, Andrea Kopplin, and Ute Schmücker for their expert technical assistance. This work was supported by a grant from the Bernese Cancer League (G.M.B.) and from the IFORES program of the University Duisburg Essen (L.S.).

Conflict of interest

The other authors declare no competing financial interests.

Supplementary material

12185_2010_750_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 49 kb)

References

  1. 1.
    Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352:804–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Kipps TJ. Chronic lymphocytic leukemia. Curr Opin Hematol. 2000;7:223–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Seiler T, Döhner H, Stilgenbauer S. Risk stratification in chronic lymphocytic leukemia. Semin Oncol. 2006;33:186–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Binet JL, Caligaris-Cappio F, Catovsky D, Cheson B, Davis T, Dighiero G, et al. Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood. 2006;107:859–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.PubMedGoogle Scholar
  6. 6.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.PubMedGoogle Scholar
  7. 7.
    Kröber A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.PubMedGoogle Scholar
  8. 8.
    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348:1764–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Stilgenbauer S, Bullinger L, Lichter P, Döhner H. Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia. 2002;16:993–1007.CrossRefPubMedGoogle Scholar
  10. 10.
    Döhner H, Stilgenbauer S, Döhner K, Bentz M, Lichter P. Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med. 1999;77:266–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Verfaillie CM, Pera MF, Lansdorp PM. Stem cells: hype and reality. Hematol Am Soc Hematol Educ Program. 2002;1:369–91.Google Scholar
  12. 12.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.CrossRefPubMedGoogle Scholar
  13. 13.
    Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989;59:521–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene. 2001;269:1–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Hug N, Lingner J. Telomere length homeostasis. Chromosoma. 2006;115:413–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Engelhardt M, Martens UM. The implication of telomerase activity and telomere stability for replicative aging and cellular immortality (review). Oncol Rep. 1998;5:1043–52.PubMedGoogle Scholar
  17. 17.
    Weng NP, Palmer LD, Levine BL, Lane HC, June CH, Hodes RJ. Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev. 1997;160:43–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Hultdin M, Gronlund E, Norrback KF, Just T, Taneja K, Roos G. Replication timing of human telomeric DNA and other repetitive sequences analyzed by fluorescence in situ hybridization and flow cytometry. Exp Cell Res. 2001;271:223–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1625–38.CrossRefPubMedGoogle Scholar
  20. 20.
    Chiorazzi N, Ferrarini M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol. 2003;21:841–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Fischer M, Klein U, Kuppers R. Molecular single-cell analysis reveals that CD5-positive peripheral blood B cells in healthy humans are characterized by rearranged Vkappa genes lacking somatic mutation. J Clin Invest. 1997;100:1667–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Poncet D, Belleville A, de t’kint RC, de Roborel CA, Ben SE, Merle-Beral H, et al. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood. 2008;111:2388–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Hultdin M, Rosenquist R, Thunberg U, Tobin G, Norrback KF, Johnson A, et al. Association between telomere length and V(H) gene mutation status in chronic lymphocytic leukaemia: clinical and biological implications. Br J Cancer. 2003;88:593–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Grabowski P, Hultdin M, Karlsson K, Tobin G, Aleskog A, Thunberg U, et al. Telomere length as a prognostic parameter in chronic lymphocytic leukemia with special reference to VH gene mutation status. Blood. 2005;105:4807–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Damle RN, Batliwalla FM, Ghiotto F, Valetto A, Albesiano E, Sison C, et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood. 2004;103:375–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Bechter OE, Eisterer W, Pall G, Hilbe W, Kuhr T, Thaler J. Telomere length and telomerase activity predict survival in patients with B cell chronic lymphocytic leukemia. Cancer Res. 1998;58:4918–22.PubMedGoogle Scholar
  27. 27.
    Roos G, Krober A, Grabowski P, Kienle D, Buhler A, Dohner H, et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood. 2008;111:2246–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O’Brien S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87:4990–7.PubMedGoogle Scholar
  29. 29.
    Frey UH, Nückel H, Sellmann L, Siemer D, Küppers R, Dürig J, et al. The GNAS1 T393C Polymorphism is associated with disease progression and survival in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2006;12:5686–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Schroers R, Griesinger F, Trümper L, Haase D, Kulle B, Klein-Hitpass L, et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia. 2005;19:750–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Döhner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Yamaguchi H, Baerlocher GM, Lansdorp PM, Chanock SJ, Nunez O, Sloand E, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Baerlocher GM, Vulto I, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006;1:2365–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Röth A, de Beer D, Nückel H, Sellmann L, Dührsen U, Dürig J, et al. Significantly shorter telomeres in T-cells of patients with ZAP-70+/CD38+ chronic lymphocytic leukaemia. Br J Haematol. 2008;143:383–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Rossi D, Lobetti BC, Genuardi E, Monitillo L, Drandi D, Cerri M, et al. Telomere length is an independent predictor of survival, treatment requirement and Richter’s syndrome transformation in chronic lymphocytic leukemia. Leukemia. 2009;218:122–30.Google Scholar
  36. 36.
    Walsh SH, Grabowski P, Berglund M, Thunberg U, Thorselius M, Tobin G, et al. Telomere length and correlation with histopathogenesis in B-cell leukemias/lymphomas. Eur J Haematol. 2007;78:283–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Ricca I, Rocci A, Drandi D, Francese R, Compagno M, Lobetti BC, et al. Telomere length identifies two different prognostic subgroups among VH-unmutated B-cell chronic lymphocytic leukemia patients. Leukemia. 2007;21:697–705.PubMedGoogle Scholar
  38. 38.
    Palanduz S, Serakinci N, Cefle K, Aktan M, Tutkan G, Ozturk S, et al. A different approach to telomere analysis with ddPRINS in chronic lymphocytic leukemia. Eur J Med Genet. 2006;49:63–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Röth A, Dürig J, Himmelreich H, Bug S, Siebert R, Dührsen U, et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia. 2007;21:2456–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Röth A, Harley CB, Baerlocher GM. Imetelstat (GRN163L)—telomerase-based cancer therapy. Recent Results Cancer Res. 2010;184:221–34.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • Ludger Sellmann
    • 1
    • 2
    • 5
  • Dirk de Beer
    • 3
  • Marius Bartels
    • 1
  • Bertram Opalka
    • 1
  • Holger Nückel
    • 1
  • Ulrich Dührsen
    • 1
  • Jan Dürig
    • 1
  • Marc Seifert
    • 2
  • Dörte Siemer
    • 2
  • Ralf Küppers
    • 2
  • Gabriela M. Baerlocher
    • 3
    • 4
  • Alexander Röth
    • 1
  1. 1.Department of HaematologyUniversity of Duisburg EssenEssenGermany
  2. 2.Institute of Cell Biology (Cancer Research)University of Duisburg EssenEssenGermany
  3. 3.Experimental Haematology, Department of Clinical ResearchUniversity of BernBernSwitzerland
  4. 4.Department of HaematologyUniversity Hospital BernBernSwitzerland
  5. 5.Department of HaematologyUniversity HospitalEssenGermany

Personalised recommendations