International Journal of Hematology

, Volume 93, Issue 1, pp 21–26 | Cite as

Iron and erythropoiesis: a dual relationship

Progress in Hematology Seven wonders of erythropoiesis

Abstract

Iron is essential for cell life and especially for erythropoiesis which is the major body consumer of iron for red cell production. The study of genetic disorders of iron metabolism, the identification of iron transporters and of the role of hepcidin as the key regulator of systemic iron homeostasis have greatly contributed to our understanding of iron handling by the erythroid marrow. Spontaneous and engineered animal models of iron disorders have help to add further insights to the issue. A still incompletely understood aspect remains the regulation that erythropoiesis exerts on iron.

Keywords

Iron Erythropoiesis Hepcidin 

References

  1. 1.
    Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet. 1999;21:396–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Beutler E, Gelbart T, Lee P, Trevino R, Fernandez MA, Fairbanks VF. Molecular characterization of a case of atransferrinemia. Blood. 2000;96:4071–4.PubMedGoogle Scholar
  4. 4.
    Trombini P, Coliva T, Nemeth E, Mariani R, Ganz T, Biondi A, et al. Effects of plasma transfusion on hepcidin production in human congenital hypotransferrinemia. Haematologica. 2007;92:1407–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Trenor CC 3rd, Campagna DR, Sellers VM, Andrews NC, Fleming MD. The molecular defect in hypotransferrinemic mice. Blood. 2000;96(3):1113–8.PubMedGoogle Scholar
  6. 6.
    Bartnikas TB, Andrews NC, Fleming MD. Transferrin is a major determinant of hepcidin expression in hypotransferrinemic mice. Blood. doi:10.1182/blood-2010-05-287359.
  7. 7.
    Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37(11):1264–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Ohgami RS, Campagna DR, Antiochos B, Wood EB, Sharp JJ, Barker JE, et al. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood. 2005;106:3625–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Lim JE, Jin O, Bennett C, Morgan K, Wang F, Trenor CC 3rd, et al. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet. 2005;37:1270–3.CrossRefPubMedGoogle Scholar
  10. 10.
    White RA, Boydston LA, Brookshier TR, McNulty SG, Nsumu NN, Brewer BP, et al. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking. Genomics. 2005;86:668–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997;16:383–6.PubMedGoogle Scholar
  12. 12.
    Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA. 1998;95:1148–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388:482–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Iolascon A, Camaschella C, Pospisilova D, Piscopo C, Tchernia G, Beaumont C. Natural history of recessive inheritance of DMT1 mutations. J Pediatr. 2008;152:136–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005;115:1258–66.PubMedGoogle Scholar
  16. 16.
    Kono S, Miyajima H. Molecular and pathological basis of aceruloplasminemia. Biol Res. 2006;39:15–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Kaneko Y, Miyajima H, Piperno A, Tomosugi N, Hayashi H, Morotomi N, et al. Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders. J Gastroenterol. 2010;45(11):1163–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA. 1999;96:10812–7.CrossRefPubMedGoogle Scholar
  19. 19.
    De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Fleming MD. The genetics of inherited sideroblastic anemias. Semin Hematol. 2002;39(4):270–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamamoto M, Nakajima O. Animal models for X-linked sideroblastic anemia. Int J Hematol. 2000;72:157–64.PubMedGoogle Scholar
  23. 23.
    Nakajima O, Okano S, Harada H, Kusaka T, Gao X, Hosoya T, et al. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes Cells. 2006;11:685–700.CrossRefPubMedGoogle Scholar
  24. 24.
    Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M, Kellogg MD, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet. 2009;41(6):651–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature. 2005;436(7053):1035–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, Levi S, Iolascon A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007;110(4):1353–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Ye H, Jeong SY, Ghosh MC, Kovtunovych G, Silvestri L, Ortillo D, Uchida N, Tisdale J, Camaschella C, Rouault TA. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest. 2010;120(5):1749–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood. 2000;96:3256–64.PubMedGoogle Scholar
  29. 29.
    Pondarre C, Campagna DR, Antiochos B, Sikorski L, Mulhern H, Fleming MD. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood. 2007;109(8):3567–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21(2):195–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Melis MA, Cau M, Congiu R, Sole G, Barella S, Cao A, et al. A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron. Haematologica. 2008;93(10):1473–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Guillem F, Lawson S, Kannengiesser C, Westerman M, Beaumont C, Grandchamp B. Two nonsense mutations in the TMPRSS6 gene in a patient with microcytic anemia and iron deficiency. Blood. 2008;112(5):2089–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Silvestri L, Guillem F, Pagani A, Nai A, Oudin C, Silva M, et al. Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia. Blood. 2009;113(22):5605–8.CrossRefPubMedGoogle Scholar
  36. 36.
    De Falco L, Totaro F, Nai A, Pagani A, Girelli D, Silvestri L, et al. Novel TMPRSS6 mutations associated with iron-refractory iron deficiency anemia (IRIDA). Hum Mutat. 2010;31(5):E1390–405.CrossRefPubMedGoogle Scholar
  37. 37.
    Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, Khovananth K, Mudd S, Mann N, Moresco EM, Beutler E, Beutler B. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320:1088–92.CrossRefPubMedGoogle Scholar
  38. 38.
    Folgueras AR, de Lara FM, Pendás AM, Garabaya C, Rodríguez F, Astudillo A, Bernal T, Cabanillas R, López-Otín C, Velasco G. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112:2539–45.CrossRefPubMedGoogle Scholar
  39. 39.
    Gelvan D, Fibach E, Meyron-Holtz EG, Konijn AM. Ferritin uptake by human erythroid precursors is a regulated iron uptake pathway. Blood. 1996;88(8):3200–7.PubMedGoogle Scholar
  40. 40.
    Leimberg JM, Prus E, Link G, Fibach E, Konijn AM. Iron-chelator complexes as iron sources for early developing human erythroid precursors. Transl Res. 2008;151(2):88–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA. 2010;107(8):3505–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9(5):461–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319:825–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Keel SB, Abkowitz JL. The microcytic red cell and the anemia of inflammation. N Engl J Med. 2009;361(19):1904–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Barton JC, Bertoli LF, Rothenberg BE. Peripheral blood erythrocyte parameters in hemochromatosis: evidence for increased erythrocyte hemoglobin content. J Lab Clin Med. 2000;135(1):96–10445.CrossRefPubMedGoogle Scholar
  46. 46.
    Vujic Spasic M, Hentze M, Muckenthaler M. Extra-hepatic HFE functions may be responsible for iron oveload in the heart and alteration within the erythron. 2009 International poster 84, p 121.Google Scholar
  47. 47.
    Roetto A, Di Cunto F, Pellegrino RM, Hirsch E, Azzolino O, Bondi A, et al. Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-alpha and Tfr2-beta isoforms in different tissues. Blood. 2010;115(16):3382–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Dallalio G, Law E, Means RT Jr. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood. 2006;107(7):2702–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Finch C. Regulators of iron balance in humans. Blood. 1994;84(6):1697–702.PubMedGoogle Scholar
  50. 50.
    Origa R, Galanello R, Ganz T, Giagu N, Maccioni L, Faa G, et al. Liver iron concentrations and urinary hepcidin in β-thalassemia. Haematologica. 2007;92:583–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13:1096–101.CrossRefPubMedGoogle Scholar
  52. 52.
    Tamary H, Shalev H, Perez-Avraham G, Zoldan M, Levi I, Swinkels DW, et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood. 2008;112(13):5241–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Tanno T, Noel P, Miller JL. Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol. 2010;17(3):184–90.PubMedGoogle Scholar
  54. 54.
    Lakhal S, Schoedel J, Townsend AR, Pugh CW, Ratcliffe PJ, Mole DR. Regulation of type II transmembrane serine proteinase TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signalling and iron homeostasis. J Biol Chem. doi:10.1074/jbc.M110.173096.

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  1. 1.Division of Genetics and Cell BiologyUniversità Vita-Salute e IRCCS San RaffaeleMilanItaly

Personalised recommendations