International Journal of Hematology

, Volume 92, Issue 3, pp 451–462 | Cite as

Overexpression of PAX5 induces apoptosis in multiple myeloma cells

  • Maryse Proulx
  • Marie-Pierre Cayer
  • Mathieu Drouin
  • André Laroche
  • Daniel JungEmail author
Original Article


PAX5 is an essential transcription factor for the commitment of lymphoid progenitors to the B-lymphocyte lineage. PAX5 suppression results in retrodifferentiation of B lymphocytes to an uncommitted progenitor cell stage, whereas PAX5 suppression in mature B lymphocytes leads to further development into plasma cells. Here, we have analyzed the fate of plasma cell lines following PAX5 reexpression. Human B cell lines were infected with Ad5/F35 adenoviruses encoding either EYFP or PAX5. Expression analysis of specific plasma cell transcription factors (IRF4, Blimp-1 and XBP-1) suggests that PAX5 reexpression does not induce retrodifferentiation of plasma cells into B lymphocytes. Interestingly, the viability of RPMI-8226 and U266 multiple myeloma cell lines markedly declined at 4–7 days post-transduction, whereas other plasma cell lines maintained their viability. Apoptosis analysis through Annexin V measurement also revealed a higher level of apoptosis in PAX5-expressing myeloma cell lines. Finally, Western blot analysis of pro- and anti-apoptotic proteins revealed that the anti-apoptotic protein MCL-1 was down-modulated in PAX5-transduced multiple myeloma cell lines. In conclusion, our results show that the expression of PAX5 in plasma cell lines induces apoptosis exclusively in multiple myelomas. This might represent a potential therapeutic avenue in the treatment of multiple myeloma.


Multiple myeloma PAX5 Apoptosis Adenovirus Plasma cell leukemia 



Maryse Proulx is supported by a scholar grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). We are grateful to Jean-François Leblanc for its comments on the manuscript.


  1. 1.
    Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8:463–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Barberis A, Widenhorn K, Vitelli L, Busslinger M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 1990;4:849–59.CrossRefPubMedGoogle Scholar
  4. 4.
    Adams B, Dorfler P, Aguzzi A, Kozmik Z, Urbanek P, Maurer-Fogy I, et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 1992;6:1589–607.CrossRefPubMedGoogle Scholar
  5. 5.
    Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M. The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol. 1992;12:2662–72.PubMedGoogle Scholar
  8. 8.
    Nutt SL, Morrison AM, Dorfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 1998;17:2319–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzsimmons D, Hodsdon W, Wheat W, Maira SM, Wasylyk B, Hagman J. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 1996;10:2198–211.CrossRefPubMedGoogle Scholar
  10. 10.
    Schebesta M, Pfeffer PL, Busslinger M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity. 2002;17:473–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Hesslein DG, Pflugh DL, Chowdhury D, Bothwell AL, Sen R, Schatz DG. Pax5 is required for recombination of transcribed, acetylated, 5’ IgH V gene segments. Genes Dev. 2003;17:37–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11:476–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Schaniel C, Bruno L, Melchers F, Rolink AG. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood. 2002;99:472–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Rolink AG, Nutt SL, Melchers F, Busslinger M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature. 1999;401:603–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Mikkola I, Heavey B, Horcher M, Busslinger M. Reversion of B cell commitment upon loss of Pax5 expression. Science. 2002;297:110–3.CrossRefPubMedGoogle Scholar
  16. 16.
    Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expression programme by Pax5. Immunol Cell Biol. 2008;86:47–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Holmes ML, Carotta S, Corcoran LM, Nutt SL. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 2006;20:933–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17:781–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, et al. Loss of Pax5 promotes plasma cell differentiation. Immunity. 2006;24:283–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Kallies A, Hasbold J, Fairfax K, Pridans C, Emslie D, McKenzie BS, et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity. 2007;26:555–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412:300–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity. 1996;5:377–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Cayer MP, Drouin M, Proulx M, Jung D. 2-Methoxyestradiol induce the conversion of human peripheral blood memory B lymphocytes into plasma cells. J Immunol Methods. 2010;355:29–39.CrossRefPubMedGoogle Scholar
  24. 24.
    Cayer MP, Drouin M, Sea SP, Forest A, Cote S, Simard C, et al. Comparison of promoter activities for efficient expression into human B cells and haematopoietic progenitors with adenovirus Ad5/F35. J Immunol Methods. 2007;322:118–27.CrossRefPubMedGoogle Scholar
  25. 25.
    Jung D, Neron S, Drouin M, Jacques A. Efficient gene transfer into normal human B lymphocytes with the chimeric adenoviral vector Ad5/F35. J Immunol Methods. 2005;304:78–87.CrossRefPubMedGoogle Scholar
  26. 26.
    Drouin M, Cayer MP, Jung D. Adenovirus 5 and chimeric adenovirus 5/F35 employ distinct B-lymphocyte intracellular trafficking routes that are independent of their cognate cell surface receptor. Virology. 2010;401:305–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Cayer MP, Proulx M, Ma XZ, Sakac D, Giguere JF, Drouin M, et al. c-Src tyrosine kinase co-associates with and phosphorylates signal transducer and activator of transcription 5b which mediates the proliferation of normal human B lymphocytes. Clin Exp Immunol. 2009;156:419–27.CrossRefPubMedGoogle Scholar
  28. 28.
    Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.CrossRefPubMedGoogle Scholar
  29. 29.
    LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247–59.CrossRefPubMedGoogle Scholar
  30. 30.
    Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De Vos J, et al. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol. 2009;145:45–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99:1885–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Warr MR, Acoca S, Liu Z, Germain M, Watson M, Blanchette M, et al. BH3-ligand regulates access of MCL-1 to its E3 ligase. FEBS Lett. 2005;579:5603–8.PubMedGoogle Scholar
  35. 35.
    Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 2003;17:1475–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Zall H, Weber A, Besch R, Zantl N, Hacker G. Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1. Mol Cancer. 2010;9:164.Google Scholar
  38. 38.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Huang CR, Yang-Yen HF. The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett. 2010;584:3323–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Kallies A, Nutt SL. Terminal differentiation of lymphocytes depends on Blimp-1. Curr Opin Immunol. 2007;19:156–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Fecteau JF, Cote G, Neron S. A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol. 2006;177:3728–36.PubMedGoogle Scholar
  42. 42.
    Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341:1520–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25:225–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17:51–62.CrossRefPubMedGoogle Scholar
  47. 47.
    Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Reimold AM, Ponath PD, Li YS, Hardy RR, David CS, Strominger JL, et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183:393–401.CrossRefPubMedGoogle Scholar
  49. 49.
    Iwakoshi NN, Lee AH, Glimcher LH. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev. 2003;194:29–38.CrossRefPubMedGoogle Scholar
  50. 50.
    Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Jagannath S, Tricot G, Barlogie B. Autotransplants in multiple myeloma: pushing the envelope. Hematol Oncol Clin North Am. 1997;11:363–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–7.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • Maryse Proulx
    • 1
    • 2
  • Marie-Pierre Cayer
    • 1
  • Mathieu Drouin
    • 1
  • André Laroche
    • 1
  • Daniel Jung
    • 1
    • 2
    Email author
  1. 1.Héma-QuébecQuebecCanada
  2. 2.Department of Biochemistry and MicrobiologyLaval UniversityQuebecCanada

Personalised recommendations