Advertisement

International Journal of Hematology

, Volume 91, Issue 5, pp 831–837 | Cite as

Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group

  • Yasuhiro Mizushima
  • Tomohiko Taki
  • Akira Shimada
  • Yoshihiro Yui
  • Yoshimi Hiraumi
  • Hiroshi Matsubara
  • Motonobu Watanabe
  • Ken-ichiro Watanabe
  • Yuri Kamitsuji
  • Yasuhide Hayashi
  • Ichiro Tsukimoto
  • Ryoji Kobayashi
  • Keizo Horibe
  • Akio Tawa
  • Tatsutoshi Nakahata
  • Souichi AdachiEmail author
Original Article

Abstract

High BAALC (brain and acute leukemia, cytoplasmic) gene expression may indicate an adverse prognosis for adults who have acute myeloid leukemia (AML) and a normal karyotype, but its prognostic significance for pediatric AML cases is unclear. Whether different BAALC isoform patterns are of prognostic significance is also unclear. Newly diagnosed AML patients with normal karyotype who were treated by the Japanese Childhood AML Cooperative Treatment Protocol AML 99 were analyzed in terms of their BAALC expression levels (n = 29), BAALC isoforms (n = 29), and CEBPA mutations (n = 49). Eleven and 18 patients exhibited high and low BAALC expression, respectively, but these groups did not differ significantly in terms of overall survival (54.6 vs. 61.1%, P = 0.55) or event-free survival (61.4 vs. 50.0%, P = 0.82). Three of these 29 patients (10.3%) expressed the exon 1-5-6-8 BAALC isoform along with the expected 1-6-8 isoform and had adverse clinical outcomes. Novel CEBPA mutations were also identified in four of 49 patients (8.2%). All four patients have maintained complete remission for at least 5 years. Thus, 1-5-6-8 isoform expression may be associated with an adverse prognosis in pediatric AML with normal karyotype. CEBPA mutations may indicate a favorable prognosis.

Keywords

Pediatric AML Normal karyotype BAALC CEBPA 

Notes

Acknowledgments

The authors are grateful to all members of the Japanese Childhood AML Cooperative Study Group. We also thank to Ken Tabuchi for statistical analysis. This work was supported in part by a Grant-in-Aid for Cancer Research (16-3) from the Ministry of Health, Labor and Welfare of Japan, and in part by a Scientific Research (C) grant (17591083) from the Ministry of Education, Science, Technology, Sports, and Culture of Japan.

Supplementary material

12185_2010_585_MOESM1_ESM.tif (72 kb)
Supplementary Table 1 (TIFF 71 kb)
12185_2010_585_MOESM2_ESM.tif (54 kb)
Supplementary Fig. 1 The statistical significance was not indicated for insufficient sample numbers in AML 99 protocol between normal karyotype patients with CEBPA mutation (+) (n = 4) and mutation (-) (n = 45) with regard to their OS (100 % versus 55.4 %, P = 0.14) [A] or DFS (100 % versus 48.9 %, P = 0.09) [B] (TIFF 54 kb)

References

  1. 1.
    Brown P, Mclntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Shimada A, Taki T, Tabuchi K, Taketani T, Hanada R, Tawa A, et al. Tandem duplications of MLL and FLT3 are correlated with poor prognosis in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer. 2008;50:264–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108:3654–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Shimada A, Taki T, Kubota C, Tawa A, Horibe K, Tsuchida M, et al. No nucleophosmin mutations in pediatric acute myeloid leukemia with normal karyotype: a study of the Japanese Childhood AML Cooperative Study Group. Leukemia. 2007;21:1307.CrossRefPubMedGoogle Scholar
  5. 5.
    Tanner SM, Austin JL, Leone G, Rush LJ, Plass C, Heinonen K, et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA. 2001;98:13901–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood. 2003;102:1613–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G, et al. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol. 2006;24:790–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Marcucci G, Mrózek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol. 2005;12:68–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.CrossRefPubMedGoogle Scholar
  10. 10.
    Baldus CD, Mrózek K, Marcucci G, Bloomfield CD. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br J Haematol. 2007;137:387–400.CrossRefPubMedGoogle Scholar
  11. 11.
    Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH, et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein in myelodysplastic syndromes and acute myeloid leukemias. Blood. 2002;99:1332–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association. Blood. 2002;100:2717–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22:624–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Basecke J, Whelan JT, Griesinger F, Bertrand FE. The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol. 2006;135:438–49.CrossRefPubMedGoogle Scholar
  15. 15.
    Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11:1416–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Marcucci G, Baldus CD, Ruppert AS, Radmacher MD, Mrózek K, Whitman SP, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23:9234–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101:837–45.Google Scholar
  18. 18.
    Damiani D, Tiribelli M, Calistri E, Geromin A, Chiarvesio A, Michelutti A, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica. 2006;91:825–8.PubMedGoogle Scholar
  19. 19.
    Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood. 2006;108:3898–905.CrossRefPubMedGoogle Scholar
  20. 20.
    Radmacher MD, Marcucci G, Ruppert AS, Mrózek K, Whitman SP, Vardiman JW, et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood. 2006;108:1677–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, et al. A previous unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med. 2006;12:945–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Hossain A, Nixon M, Kuo MT, Saunders GF. N-terminally truncated WT1 protein with oncogenic properties overexpressed in Leukemia. J Biol Chem. 2006;281:28122–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Jurcic JG, Nimer SD, Scheinberg DA, DeBlasio T, Warrell RP Jr, Miller WH Jr, et al. Prognostic significance of minimal residual disease and PML/RARa isoform type: long-term follow-up in acute promyelocytic leukemia. Blood. 2001;98:2651–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Yagi T, Hibi S, Takanashi M, Kano G, Tabata Y, Imamura T, et al. High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood. 2002;99:1350–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang HW, Piao HY, Taki T, Chen T, Hashizume K, Ohnishi H, et al. Pattern of FHIT gene expression in normal and leukaemic cells. Int J Cancer. 1999;81:897–901.CrossRefPubMedGoogle Scholar
  26. 26.
    Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Tsukimoto I, Tawa A, Horibe K, Tabuchi K, Kigasawa H, Tsuchida M, et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol. 2009;27:4007–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, et al. Dominant-negative mutations of CEBPA, encoding CCAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001;27:263–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Najima Y, Ohashi K, Kawamura M, Onozuka Y, Yamaguchi T, Akiyama H, et al. Molecular monitoring of BAALC expression in patients with CD34-positive acute leukemia. Int J Hematol. 2010. doi: 10.1007/s12185-010-0550-8.
  30. 30.
    Robinson JA, Susulic V, Liu YB, Taylor C, Hardenburg J, Gironda V, et al. Identification of a PTH regulated gene selectively induced in vivo during PTH-mediated bone formation. J Cell Biochem. 2006;98:1203–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Satoskar AA, Tanner SM, Weinstein M, Qualman SJ, de la Chapelle A. BAALC, a marker of mesoderm and muscle. Gene Expr Patterns. 2005;5:463–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang X, Tian QB, Okano A, Sakagami H, Moon IS, Kondo H, et al. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J Neurochem. 2005;92:647–59.CrossRefPubMedGoogle Scholar
  33. 33.
    Baldus CD, Tanner SM, Kusewitt DF, Liyanarachchi S, Choi C, Caligiuri MA, et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol. 2003;31:1051–6.PubMedGoogle Scholar
  34. 34.
    Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107:3847–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Leroy H, Roumier C, Huyghe P, Biggio V, Fenaux P, Preudhomme C. CEBPA point mutations in hematological malignancies. Leukemia. 2005;19:329–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Liang DC, Shih LY, Huang CF, Hung IJ, Yang CP, Liu HC, et al. CEBPA mutations in childhood acute myeloid leukemia. Leukemia. 2005;19:410–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113:3088–91.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • Yasuhiro Mizushima
    • 1
  • Tomohiko Taki
    • 2
  • Akira Shimada
    • 3
  • Yoshihiro Yui
    • 1
  • Yoshimi Hiraumi
    • 1
  • Hiroshi Matsubara
    • 1
  • Motonobu Watanabe
    • 1
  • Ken-ichiro Watanabe
    • 1
  • Yuri Kamitsuji
    • 4
  • Yasuhide Hayashi
    • 3
  • Ichiro Tsukimoto
    • 5
  • Ryoji Kobayashi
    • 6
  • Keizo Horibe
    • 7
  • Akio Tawa
    • 8
  • Tatsutoshi Nakahata
    • 1
  • Souichi Adachi
    • 1
    • 9
    Email author
  1. 1.Department of Pediatrics, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Molecular Laboratory MedicineKyoto Prefectural University of Medicine Graduate School of Medical ScienceKyotoJapan
  3. 3.Department of Hematology and OncologyGunma Children’s Medical CenterGunmaJapan
  4. 4.Department of Transfusion Medicine and Cell TherapyKyoto University HospitalKyotoJapan
  5. 5.Department of the First PediatricsToho University School of MedicineTokyoJapan
  6. 6.Department of Pediatrics, Graduate School of MedicineHokkaido UniversitySapporoJapan
  7. 7.Clinical Research CenterNational Hospital Organization Nagoya Medical CenterAichiJapan
  8. 8.Department of PediatricsNational Hospital Organization Osaka National HospitalOsakaJapan
  9. 9.Department of Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations