International Journal of Hematology

, Volume 91, Issue 2, pp 189–200 | Cite as

The current status and the future of JAK2 inhibitors for the treatment of myeloproliferative diseases

  • Yasumichi Hitoshi
  • Nan Lin
  • Donald G. Payan
  • Vadim Markovtsov
Progress in Hematology Molecular mechanism, diagnosis, and treatment for myeloproliferative neoplasms

Abstract

Janus kinases (JAKs) are critical components of cytokine signaling pathways which regulate immunity, inflammation, hematopoiesis, growth, and development. The recent discovery of JAK2-activating mutations as a causal event in the majority of patients with Philadelphia chromosome negative (Ph−) myeloproliferative disorders (MPDs) prompted many pharmaceutical companies to develop JAK2-selective inhibitors for the treatment of MPDs. JAK2 inhibitors effectively reduce JAK2-driven phosphorylation of signal transducer and activator of transcription 5, and cell proliferation and cell survival in JAK2-activated cells in vitro and in vivo. Most inhibitors are currently being evaluated in patients with one form of MPD, myelofibrosis. Patients treated with these inhibitors experienced a rapid reduction of splenomegaly, significant improvement of constitutional symptoms, and increased daily activity with few adverse events. A partial reduction of JAK2V617F disease burden during the treatment with JAK2 inhibitors was also observed. The inhibitors appear to have a therapeutic benefit in the treatment of these disorders. The results of ongoing clinical trials will allow further evaluation of clinical benefits and safety of these compounds. In this review, the authors summarize the status of JAK2 inhibitors in development and discuss their benefits and challenges.

Keywords

JAK2 kinase inhibitor Myeloproliferative disorders JAK2V617F 

References

  1. 1.
    Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.1–6.CrossRefGoogle Scholar
  2. 2.
    Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, et al. Defective lymphoid development in mice lacking Jak3. Science. 1995;270(5237):800–2.CrossRefPubMedGoogle Scholar
  7. 7.
    Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science. 1995;270(5237):794–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.PubMedGoogle Scholar
  9. 9.
    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107(11):4274–81.CrossRefPubMedGoogle Scholar
  13. 13.
    Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22(1):87–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22(4):756–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111(10):5109–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Frohling S, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood. 2006;108(8):2770–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Malinge S, Ben-Abdelali R, Settegrana C, Radford-Weiss I, Debre M, Beldjord K, et al. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood. 2007;109(5):2202–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.CrossRefPubMedGoogle Scholar
  20. 20.
    Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112(6):2190–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood. 2006;107(1):176–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, et al. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol. 2009;387(1):219–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD, et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell. 2008;13(4):321–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Goh KC, Ong WC, Hu C, Hentze H, Liang AL, Stunkel W, et al. SB1518: a potent and orally active JAK2 inhibitor for the treatment of myeloproliferative disorders. ASH Annu Meet Abstr. 2007;110(11):538.Google Scholar
  25. 25.
    Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S, et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood. 2008;111(12):5663–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Paquette R, Sokol L, Shah NP, Silver RT, List AF, Clary DO, et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera. ASH Annu Meet Abstr. 2008;112(11):2810.Google Scholar
  27. 27.
    Pardanani A, Lasho T, Smith G, Burns CJ, Fantino E, Tefferi A. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia. 2009;23(8):1441–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Fridman J, Nussenzveig R, Liu P, Rodgers J, Burn T, Haley P, et al. Discovery and preclinical characterization of INCB018424, a selective JAK2 inhibitor for the treatment of myeloproliferative disorders. ASH Annu Meet Abstr. 2007;110(11):3538.Google Scholar
  29. 29.
    Lasho TL, Tefferi A, Hood JD, Verstovsek S, Gilliland DG, Pardanani A. TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia. 2008;22(9):1790–2.CrossRefPubMedGoogle Scholar
  30. 30.
    Jedidi A, Marty C, Oligo C, Jeanson-Leh L, Ribeil JA, Casadevall N, et al. Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. Blood. 2009;114(9):1842–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Markovtsov V, Tonkin E, Fang S, Liu C, Gelman M, Lang W, et al. In vitro and in vivo inhibition of JAK2 signaling by potent and selective JAK2 inhibitor. ASH Annu Meet Abstr. 2008;112(11):3721.Google Scholar
  32. 32.
    Burns CJ, Bourke DG, Andrau L, Bu X, Charman SA, Donohue AC, et al. Phenylaminopyrimidines as inhibitors of Janus kinases (JAKs). Bioorg Med Chem Lett. 2009;19(20):5887–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13(4):311–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Bumm TGP, Tyner JW, Deininger J, Loriaux M, VanDyke J, Druker BJ, et al. Effects of CYT387, a potent novel JAK2 inhibitor on JAK2–V617F induced MPD. ASH Annu Meet Abstr. 2008;112(11):856.Google Scholar
  35. 35.
    Cervantes F. Modern management of myelofibrosis. Br J Haematol. 2005;128(5):583–92.CrossRefPubMedGoogle Scholar
  36. 36.
    Pardanani AD, Gotlib J, Jamieson C, Cortes J, Talpaz M, Stone RM, et al. A phase I study of TG101348, an orally bioavailable JAK2-selective inhibitor, in patients with myelofibrosis. ASH Annu Meet Abstr. 2008;112(11):97.Google Scholar
  37. 37.
    Verstovsek S, Kantarjian HM, Pardanani AD, Thomas D, Cortes J, Mesa RA, et al. The JAK inhibitor, INCB018424, demonstrates durable and marked clinical responses in primary myelofibrosis (PMF) and post- polycythemia/essential thrombocythemia myelofibrosis (post PV/ETMF). ASH Annu Meet Abstr. 2008;112(11):1762.Google Scholar
  38. 38.
    Pardanani A, Gotlib J, Jamieson C, Cortes J, Talpaz M, Stone R, et al. TG101348, a JAK2-selective inhibitor, is well tolerated in patients with myelofibrosis and shows substantial therapeutic activity accompanied by a reduction in JAK2V617F allele burden. In: Coco FL, editor. 14th Congress of the European hematology association. Berlin; 2009.Google Scholar
  39. 39.
    Shah NP, Olszynski P, Sokol L, Verstovsek S, Hoffman R, List AF, et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis, post-polycythemia vera, or post-essential thrombocythemia myelofibrosis. ASH Annu Meet Abstr. 2008;112(11):98.Google Scholar
  40. 40.
    Mesa RA, Verstovsek S, Kantarjian HM, Pardanani AD, Friedman S, Newton R, et al. INCB018424, a selective JAK1/2 inhibitor, significantly improves the compromised nutritional status and frank cachexia in patients with myelofibrosis (MF). ASH Annu Meet Abstr. 2008;112(11):1760.Google Scholar
  41. 41.
    Tefferi A, Kantarjian HM, Pardanani AD, Mesa RA, Newton RC, Scherle PA, et al. The clinical phenotype of myelofibrosis encompasses a chronic inflammatory state that is favorably altered by INCB018424, a selective inhibitor of JAK1/2. ASH Annu Meet Abstr. 2008;112(11):2804.Google Scholar
  42. 42.
    Verstovsek S, Kantarjian HM, Pardanani AD, Burn T, Vaddi K, Redman J, et al. Characterization of JAK2 V617F allele burden in advanced myelofibrosis (MF) patients: no change in V617F:WT JAK2 ratio in patients with high allele burdens despite profound clinical improvement following treatment with the JAK inhibitor, INCB018424. ASH Annu Meet Abstr. 2008;112(11):2802.Google Scholar
  43. 43.
    Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA. 2006;103(16):6224–9.CrossRefPubMedGoogle Scholar
  44. 44.
    James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M, et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008;112(6):2429–38.CrossRefPubMedGoogle Scholar
  45. 45.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.CrossRefPubMedGoogle Scholar
  46. 46.
    Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45(8):872–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15(12):4234–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Valent P, Deininger M. Clinical perspectives of concepts on neoplastic stem cells and stem cell-resistance in chronic myeloid leukemia. Leuk Lymphoma. 2008;49(4):604–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Trumpp A, Wiestler OD. Mechanisms of Disease: cancer stem cells—targeting the evil twin. Nat Clin Pract Oncol. 2008;5(6):337–47.PubMedGoogle Scholar
  50. 50.
    Kvinlaug BT, Huntly BJ. Targeting cancer stem cells. Expert Opin Ther Targets. 2007;11(7):915–27.CrossRefPubMedGoogle Scholar
  51. 51.
    Verstovsek S, Kantarjian H, Pardanani A, Thomas D, Cortes J, Mesa R, et al. INCB018424, an oral, selective JAK2 inhibitor, shows significant clinical activity in a phase I/II study in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). ASH Annu Meet Abstr. 2007;110(11):558.Google Scholar
  52. 52.
    Verstovsek S, Kantarjian HM, Pardanani A, Thomas DA, Cortes JE, Mesa R, et al. A phase I/II study of INCB018424, an oral, selective JAK inhibitor, in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). J Clin Oncol. 2008;26(May 20 suppl; abstr 7004). 2008 ASCO Annual Meeting.Google Scholar
  53. 53.
    Moreland L, Williams W, Scherle P, Shi J, Newton R, McKeever E, Fridman J, Burn T, Vaddi K, Levy R. ACR Annual Scientific Meeting, 24–29 October, San Francisco, CA (abstract number 714) 2008.Google Scholar
  54. 54.
    Moliterno AR, Roboz GJ, Carroll M, Luger S, Hexner E, Bensen-Kennedy DM. An open-label study of CEP-701 in patients with JAK2 V617F-positive polycythemia vera and essential thrombocytosis. ASH Annu Meet Abstr. 2008;112(11):99.Google Scholar
  55. 55.
    Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10):3669–76.CrossRefPubMedGoogle Scholar
  56. 56.
    Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Napper A. Drug discovery and development of innovative therapeutics—IBC’s 13th annual world congress. Approaches to cancer therapy. IDrugs. 2008;11(10):705–9.PubMedGoogle Scholar
  58. 58.
    Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org Lett. 2009;11(9):1999–2002.CrossRefPubMedGoogle Scholar
  59. 59.
    George DJ, Dionne CA, Jani J, Angeles T, Murakata C, Lamb J, et al. Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res. 1999;59(10):2395–401.PubMedGoogle Scholar
  60. 60.
    Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, et al. Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett. 2009;19:279–82.CrossRefPubMedGoogle Scholar
  61. 61.
    Verstovsek S, Odenike O, Scott B, Estrov Z, Cortes J, Thomas DA, Wood J, Ethirajulu K, Lowe A, Zhu HJ, Kantarjian H, Deeg HJ. Phase I dose-escalation trial of SB1518, a novel JAK2/FLT3 inhibitor, in acute and chronic myeloid diseases, including primary or post-essential thrombocythemia/polycythemia vera myelofibrosis. ASH Annu Meet Abstr. 2009; abstract number 3905.Google Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • Yasumichi Hitoshi
    • 1
  • Nan Lin
    • 1
  • Donald G. Payan
    • 1
  • Vadim Markovtsov
    • 1
  1. 1.Rigel Pharmaceuticals Inc.South San FranciscoUSA

Personalised recommendations