International Journal of Hematology

, Volume 91, Issue 2, pp 165–173 | Cite as

Molecular aspects of myeloproliferative neoplasms

  • François Delhommeau
  • Dorota Jeziorowska
  • Christophe Marzac
  • Nicole Casadevall
Progress in Hematology Molecular mechanism, diagnosis, and treatment for myeloproliferative neoplasms


During these past 5 years several studies have provided major genetic insights into the pathogenesis of the so-called classical myeloproliferative neoplasms (MPNs): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The discovery of the JAK2V617F mutation first, then of the JAK2 exon 12 and MPLW515 mutations, have modified the understanding of these diseases, their diagnosis, and management. Now it is established that almost 100% of PV patients present a JAK2 mutation. Nearly 60% of ET patients and 50% of patients with PMF have the JAK2V617F mutation. The MPLW515 mutations are also present in a small proportion of ET and PMF patients. These mutations are oncogenic events that cause these disorders; however, they do not explain the heterogeneity of the entities in which they occur. Genetic defects have not been yet identified in around 40% of ET and PMF. There are likely additional somatic genetic factors important for the MPN phenotype like the recently described TET2, ASXL1, and CBL mutations. Moreover, polymorphisms in the JAK2 gene have been recently described as associated with MPN. Additional studies of large cohorts are required to dissect the genetic events in MPNs and the mechanisms of these oncogenic cooperations.


Myeloproliferative neoplasms JAK2 MPL TET2 CBL ASXL1 


  1. 1.
    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedGoogle Scholar
  3. 3.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Casadevall N, Vainchenker W, Lacombe C, Vinci G, Chapman J, Breton-Gorius J, et al. Erythroid progenitors in polycythemia vera: demonstration of their hypersensitivity to erythropoietin using serum free cultures. Blood. 1982;59:447–51.PubMedGoogle Scholar
  7. 7.
    Michiels JJ, De Raeve H, Hebeda K, Lam KH, Berneman Z, Schroyens W, et al. WHO bone marrow features and European clinical, molecular, and pathological (ECMP) criteria for the diagnosis of myeloproliferative disorders. Leuk Res. 2007;31:1031–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Kota J, Caceres N, Constantinescu SN. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia. 2008;22:1828–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang LJ, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell. 2001;8:1327–38.CrossRefPubMedGoogle Scholar
  10. 10.
    Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem. 2005;280:27251–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med. 1998;338:572–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Staerk J, Kallin A, Demoulin JB, Vainchenker W, Constantinescu SN. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem. 2005;280:41893–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA. 2005;102:18962–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F, et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood. 2007;110:1013–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Delhommeau F, Pisani DF, James C, Casadevall N, Constantinescu S, Vainchenker W. Oncogenic mechanisms in myeloproliferative disorders. Cell Mol Life Sci. 2006;63:2939–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.CrossRefPubMedGoogle Scholar
  18. 18.
    Butcher CM, Hahn U, To LB, Gecz J, Wilkins EJ, Scott HS, et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 2008;22:870–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPl515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.CrossRefPubMedGoogle Scholar
  21. 21.
    Chaligne R, James C, Tonetti C, Besancenot R, Le Couedic JP, Fava F, et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood. 2007;110:3735–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112:141–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107:1864–71.CrossRefPubMedGoogle Scholar
  24. 24.
    James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M, et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008;112:2429–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Dikic I, Szymkiewicz I, Soubeyran P. Cbl signaling networks in the regulation of cell function. Cell Mol Life Sci. 2003;60:1805–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010;70:447–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J, et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol. 2009;27:6109–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Shannon KandLoh M. Cancer: more than kin and less than kind. Nature. 2009;460:804–7.CrossRefGoogle Scholar
  31. 31.
    Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007;109:71–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Wood AD, Chen E, Donaldson IJ, Hattangadi S, Burke KA, Dawson MA, et al. ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood. 2009;114:1820–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111:5109–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617F to wild-type jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35:32–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P, et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood. 2006;107:4139–41.CrossRefPubMedGoogle Scholar
  40. 40.
    Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110:375–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108:346–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112:2199–204.CrossRefPubMedGoogle Scholar
  43. 43.
    Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41:446–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41:455–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Campbell PJ. Somatic and germline genetics at the JAK2 locus. Nat Genet. 2009;41:385–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17:637–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.CrossRefPubMedGoogle Scholar
  50. 50.
    Beer PA, Delhommeau F, Lecouedic JP, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2009.Google Scholar
  51. 51.
    Couronne L, Lippert E, Andrieux J, Kosmider O, Radford-Weiss I, Penther D, et al. Analyses of TET2 mutations in post-myeloproliferative neoplasm acute myeloid leukemias. Leukemia. 2010;24:201–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia. 2009;23:900–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114:1628–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 2010.Google Scholar
  55. 55.
    Viguie F, Aboura A, Bouscary D, Ramond S, Delmer A, Tachdjian G, et al. Common 4q24 deletion in four cases of hematopoietic malignancy: early stem cell involvement? Leukemia. 2005;19:1411–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114:144–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113:6403–10.CrossRefPubMedGoogle Scholar
  58. 58.
    Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42.CrossRefPubMedGoogle Scholar
  59. 59.
    Acquaviva C, Gelsi-Boyer V, Birnbaum D. Myelodysplastic syndromes: lost between two states? Leukemia. 2010;24:1–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee SW, Cho YS, Na JM, Park UH, Kang M, Kim EJ, et al. ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J Biol Chem. 2010;285:18–29.CrossRefPubMedGoogle Scholar
  61. 61.
    Cho YS, Kim EJ, Park UH, Sin HS, Um SJ. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem. 2006;281:17588–98.CrossRefPubMedGoogle Scholar
  62. 62.
    Fisher CL, Pineault N, Brookes C, Helgason CD, Ohta H, Bodner C, et al. Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood. 2010;115:38–46.CrossRefPubMedGoogle Scholar
  63. 63.
    Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.CrossRefPubMedGoogle Scholar
  64. 64.
    Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adelaide J, Rey J, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL, et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood. 2008;112:1402–12.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • François Delhommeau
    • 1
    • 2
  • Dorota Jeziorowska
    • 2
    • 3
  • Christophe Marzac
    • 2
  • Nicole Casadevall
    • 1
    • 2
  1. 1.Inserm, U1009, Institut Gustave RoussyUniversité Paris SudVillejuifFrance
  2. 2.AP-HP, Laboratoire d’Hématologie, Hôpital Saint-AntoineUniversité Pierre et Marie CurieParis Cedex 12France
  3. 3.AP-HP, Laboratoire Commun de Biologie et Génétique Moléculaires, Hôpital Saint-AntoineUniversité Pierre et Marie CurieParisFrance

Personalised recommendations