International Journal of Hematology

, Volume 91, Issue 3, pp 384–391 | Cite as

Hematopoiesis from pluripotent stem cell lines

  • Hiroshi Sakamoto
  • Kiyomi Tsuji-Tamura
  • Minetaro Ogawa
Progress in Hematology ES and iPS cells, attractive stem cells for regenerative medicine

Abstract

Embryonic stem cells (ESCs) can differentiate into various types of hematopoietic cells (HPCs) when placed in an appropriate environment. Various methods for the differentiation of ESCs into specific HPC lineages have been developed using mouse ESCs. These ESC-differentiation methods have been utilized also as an in vitro model to investigate hematopoiesis in embryos and they provided critical perceptions into it. These methods have been adapted for use with human ESCs, which have the possibility of being employed in regenerative medicine; further improvement of these methods may lead to the efficient production of HPCs for use in transfusions. The generation of transplantable hematopoietic stem cells is a medical goal that is still difficult to achieve. Recently, induced pluripotent stem (iPS) cells have been established from differentiated cells. Thereby, iPS cells have expanded further possibilities of the use of pluripotent stem cell lines in clinical application. Indeed, iPS cells have been established from cells with disease genes and those which have undergone reprogramming and targeting have generated phenotypically normal HPCs. Here, we mainly summarize the recent progress in research on hematopoiesis conducted with ESCs and iPS cells.

Keywords

ES cell iPS cell Hematopoiesis Hematopoietic stem cell 

References

  1. 1.
    Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27–45.PubMedGoogle Scholar
  2. 2.
    Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. 1991;111:259–67.PubMedGoogle Scholar
  3. 3.
    Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994;265:1098–101.CrossRefPubMedGoogle Scholar
  4. 4.
    Mukouyama Y, Hara T, Xu M, Tamura K, Donovan PJ, Kim H, et al. In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta–gonad–mesonephros region. Immunity. 1998;8:105–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang WJ, Park C, Arentson E, Choi K. Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood. 2005;105:111–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med. 1999;189:1691–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Cho SK, Webber TD, Carlyle JR, Nakano T, Lewis SM, Zuniga-Pflucker JC. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc Natl Acad Sci USA. 1999;96:9797–802.CrossRefPubMedGoogle Scholar
  8. 8.
    Era T, Takagi T, Takahashi T, Bories JC, Nakano T. Characterization of hematopoietic lineage-specific gene expression by ES cell in vitro differentiation induction system. Blood. 2000;95:870–8.PubMedGoogle Scholar
  9. 9.
    Nakayama N, Fang I, Elliott G. Natural killer and B-lymphoid potential in CD34+ cells derived from embryonic stem cells differentiated in the presence of vascular endothelial growth factor. Blood. 1998;91:2283–95.PubMedGoogle Scholar
  10. 10.
    Senju S, Hirata S, Matsuyoshi H, Masuda M, Uemura Y, Araki K, et al. Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells. Blood. 2003;101:3501–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 2004;5:410–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Slukvin II, Vodyanik MA, Thomson JA, Gumenyuk ME, Choi KD. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol. 2006;176:2924–32.PubMedGoogle Scholar
  13. 13.
    Umeda K, Heike T, Yoshimoto M, Shiota M, Suemori H, Luo HY, et al. Development of primitive and definitive hematopoiesis from nonhuman primate embryonic stem cells in vitro. Development. 2004;131:1869–79.CrossRefPubMedGoogle Scholar
  14. 14.
    Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost. 2006;4:436–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood. 2008;111:5298–306.CrossRefPubMedGoogle Scholar
  16. 16.
    Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol. 2009;182:6879–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27:559–67.PubMedGoogle Scholar
  20. 20.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109:2679–87.PubMedGoogle Scholar
  24. 24.
    Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl). 1995;192:425–35.Google Scholar
  25. 25.
    Smith RA, Glomski CA. “Hemogenic endothelium” of the embryonic aorta: does it exist? Dev Comp Immunol. 1982;6:359–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity. 1998;8:761–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Fujimoto T, Ogawa M, Minegishi N, Yoshida H, Yokomizo T, Yamamoto M, et al. Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation. Genes Cells. 2001;6:1113–27.CrossRefPubMedGoogle Scholar
  28. 28.
    Eilken HM, Nishikawa S, Schroeder T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature. 2009;457:896–900.CrossRefPubMedGoogle Scholar
  29. 29.
    Hashimoto K, Fujimoto T, Shimoda Y, Huang X, Sakamoto H, Ogawa M. Distinct hemogenic potential of endothelial cells and CD41+ cells in mouse embryos. Dev Growth Differ. 2007;49:287–300.PubMedGoogle Scholar
  30. 30.
    Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 2004;21:31–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE, et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med. 2005;201:1603–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13:473–86.PubMedGoogle Scholar
  33. 33.
    Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, et al. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood. 2004;104:1873–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA. 2008;105:13087–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood. 2008;112:4475–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, Nakano T, et al. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci USA. 2002;99:12819–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Fujimoto TT, Kohata S, Suzuki H, Miyazaki H, Fujimura K. Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood. 2003;102:4044–51.CrossRefPubMedGoogle Scholar
  38. 38.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2001;98:10716–21.CrossRefPubMedGoogle Scholar
  39. 39.
    de Pooter RF, Cho SK, Carlyle JR, Zuniga-Pflucker JC. In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood. 2003;102:1649–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105:617–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R, et al. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103:11742–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Akkina RK, Rosenblatt JD, Campbell AG, Chen IS, Zack JA. Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse. Blood. 1994;84:1393–8.PubMedGoogle Scholar
  43. 43.
    Galic Z, Kitchen SG, Subramanian A, Bristol G, Marsden MD, Balamurugan A, et al. Generation of T lineage cells from human embryonic stem cells in a feeder free system. Stem Cells. 2009;27:100–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Martin CH, Woll PS, Ni Z, Zuniga-Pflucker JC, Kaufman DS. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood. 2008;112:2730–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Burt RK, Verda L, Kim DA, Oyama Y, Luo K, Link C. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med. 2004;199:895–904.CrossRefPubMedGoogle Scholar
  46. 46.
    Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.CrossRefPubMedGoogle Scholar
  47. 47.
    Brun AC, Bjornsson JM, Magnusson M, Larsson N, Leveen P, Ehinger M, et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood. 2004;103:4126–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Chan KM, Bonde S, Klump H, Zavazava N. Hematopoiesis and immunity of HOXB4-transduced embryonic stem cell-derived hematopoietic progenitor cells. Blood. 2008;111:2953–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang XB, Beard BC, Beebe K, Storer B, Humphries RK, Kiem HP. Differential effects of HOXB4 on nonhuman primate short- and long-term repopulating cells. PLoS Med. 2006;3:e173.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ. Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA. 2005;102:19081–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Bowles KM, Vallier L, Smith JR, Alexander MR, Pedersen RA. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells. 2006;24:1359–69.CrossRefPubMedGoogle Scholar
  52. 52.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964–77.CrossRefPubMedGoogle Scholar
  53. 53.
    Yoder MC, Hiatt K. Engraftment of embryonic hematopoietic cells in conditioned newborn recipients. Blood. 1997;89:2176–83.PubMedGoogle Scholar
  54. 54.
    Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA. 2009;106:808–13.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2010

Authors and Affiliations

  • Hiroshi Sakamoto
    • 1
  • Kiyomi Tsuji-Tamura
    • 1
  • Minetaro Ogawa
    • 1
  1. 1.Department of Cell Differentiation, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan

Personalised recommendations