International Journal of Hematology

, Volume 90, Issue 2, pp 177–185 | Cite as

Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma

  • Hongyu Bao
  • Miao Jiang
  • Mingqing Zhu
  • Fei Sheng
  • Jia Ruan
  • Changgeng Ruan
Original Article

Abstract

The abnormal expression of Annexin II (AnxA2, A2) has been associated with the development of tumors; however, its expression and function in multiple myeloma (MM) is less known. We compared the expression of AnxA2 in primary myeloma cells from MM patients with that in normal plasma cells from normal subjects and found that myeloma cells from patients had higher expression of AnxA2. Expression of AnxA2 was also significantly higher in MM cell lines U266 and RPMI8226, compared with other hematologic tumor cell lines. Transfecting U266 and RPMI8226 cells with the small interfering RNA (siRNA) that targets human AnxA2 led to significant downregulation of AnxA2 expression, which resulted in the decreased proliferation, invasive potential and increased apoptosis of U266 and RPMI8226 cell lines. Silencing AnxA2 gene by siRNA also inhibited the expression of pro-angiogenic molecules including VEGF-C, VEGF-R2, MMP-2, MMP-9, MT1-MMP and TIMP-2 in the two cell lines. Our data suggested that the AnxA2 is overexpressed in MM patients and myeloma cell lines U266 and RPMI8226, and that AnxA2 overexpression appeared to affect the proliferation, apoptosis, invasive potential and production of pro-angiogenic factors in MM cell lines U266 and RPMI8226.

Keywords

SiRNA AnxA2 Multiple myeloma U266 RPMI8226 

References

  1. 1.
    Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111:2962–72. doi:10.1182/blood-2007-10-078022.PubMedCrossRefGoogle Scholar
  2. 2.
    Huff CA, Matsui W. Multiple myeloma cancer stem cells. J Clin Oncol. 2008;26:2895–900. doi:10.1200/JCO.2007.15.8428.PubMedCrossRefGoogle Scholar
  3. 3.
    Mehta P. Clinical malignant hematology. JAMA. 2008;299:460. doi:10.1001/jama.299.4.460-a.CrossRefGoogle Scholar
  4. 4.
    Heyraud S, Jaquinod M, Durmort C, et al. Contribution of AnxA2 to the architecture of mature endothelial adherens junctions. Mol Cell Biol. 2008;28:1657–68. doi:10.1128/MCB.00695-07.PubMedCrossRefGoogle Scholar
  5. 5.
    Morel E, Gruenberg J. The p11/S100A10 light chain of annexin A2 is dispensable for annexin A2 association to endosomes and functions in endosomal transport. PLoS One. 2007;2(10):e1118. doi:10.1371/journal.pone.0001118.PubMedCrossRefGoogle Scholar
  6. 6.
    Brownstein C, Deora AB, Jacovina AT, et al. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood. 2004;103:317–24. doi:10.1182/blood-2003-04-1304.PubMedCrossRefGoogle Scholar
  7. 7.
    Falcone DJ, Borth W, Khan KMF, et al. Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II. Blood. 2001;97:777–84. doi:10.1182/blood.V97.3.777.PubMedCrossRefGoogle Scholar
  8. 8.
    Menell JS, Cesarman GM, Jacovina AT, et al. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340:994–1004. doi:10.1056/NEJM199904013401303.PubMedCrossRefGoogle Scholar
  9. 9.
    Claudio JO, Masih-Khan E, Tang HC, et al. A molecular compendium of genes expressed in multiple myeloma. Blood. 2002;100:2175–86. doi:10.1182/blood-2002-01-0008.PubMedCrossRefGoogle Scholar
  10. 10.
    Munshi NC, Hideshima T, Carrasco D, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004;103:1799–806. doi:10.1182/blood-2003-02-0402.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhan FH, Tian E, Bumm K, et al. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood. 2003;101:1128–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Verdelli D, Mattioli M, Fabris S, et al. Molecular and biological characterization of three novel interleukin-6-dependent human myeloma cell lines. Haematologica. 2005;90:1541–8.PubMedGoogle Scholar
  13. 13.
    Fonseca R, Stewart AK. Targeted therapeutics for multiple myeloma: the arrival of a risk-stratified approach. Mol Cancer Ther. 2007;6:802–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Barlogie B, Shaughnessy J, Tricot G, et al. Treatment of multiple myeloma. Blood. 2004;103:20–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Katzel JA, Hari P, Vesole DH. Multiple myeloma: charging toward a bright future. CA Cancer J Clin. 2007;57:301–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Bensinger W. Stem-cell transplantation for multiple myeloma in the era of novel drugs. J Clin Oncol. 2008;26:480–92. doi:10.1200/JCO.2007.11.6863.PubMedCrossRefGoogle Scholar
  17. 17.
    Palumbo A, Facon T, Sonneveld P, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood. 2008;111:3968–77. doi:10.1182/blood-2007-10-117457.PubMedCrossRefGoogle Scholar
  18. 18.
    Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol. 2008;26:1544–52. doi:10.1200/JCO.2007.14.5367.PubMedCrossRefGoogle Scholar
  19. 19.
    Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112:1593–9. doi:10.1182/blood-2008-04-149385.PubMedCrossRefGoogle Scholar
  20. 20.
    Utecht KN, Kolesar J. Bortezomib: a novel chemotherapeutic agent for hematologic malignancies. Am J Health Syst Pharm. 2008;65:1221–31. doi:10.2146/ajhp070272.PubMedCrossRefGoogle Scholar
  21. 21.
    Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–71.PubMedGoogle Scholar
  22. 22.
    Mickleburgh I, Burtle B, Hollas H, et al. Annexin A2 binds to the localization signal in the 3′untranslated region of C-myc mRNA. FEBS J. 2005;272(2):413–21. doi:10.1111/j.1742-4658.2004.04481.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Chasserot-Golaz S, Vitale N, Umbrecht-Jenck E, et al. Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-coreVesicles. Mol Biol Cell. 2005;16:1108–19. doi:10.1091/mbc.E04-07-0627.PubMedCrossRefGoogle Scholar
  24. 24.
    Zibouche M, Vincent M, Illien F, et al. The N-terminal domain of AnxA2 serves as a secondary binding site using membrane bridging. J Biol Chem. 2008;283:22121–7. doi:10.1074/jbc.M801000200.PubMedCrossRefGoogle Scholar
  25. 25.
    Rescher U, Gerke V. Annexins: unique membrane-binding proteins with diverse functions. J Cell Sci. 2004;117:2631–9. doi:10.1242/jcs.01245.PubMedCrossRefGoogle Scholar
  26. 26.
    Graauw M, Tijdens I, Smeets MB, et al. Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin activation. Mol Cell Biol. 2008;28:1029–40. doi:10.1128/MCB.01247-07.PubMedCrossRefGoogle Scholar
  27. 27.
    Filipenko NR, MacLeod TJ, Chang-Soon Y, et al. Annexin A2 is a novel rna-binding protein. J Biol Chem. 2004;279:8723–31. doi:10.1074/jbc.M311951200.PubMedCrossRefGoogle Scholar
  28. 28.
    Laumonnier Y, Syrovets T, Burysek L, et al. Identification of the annexin A2 heterotetramer as a receptor for the plasmin-induced signaling in human peripheral monocytes. Blood. 2006;107:3342–9. doi:10.1182/blood-2005-07-2840.PubMedCrossRefGoogle Scholar
  29. 29.
    MacLeod TJ, Kwon M, Filipenko NR, et al. Phospholipid-associated annexin A2-S100A10 heterotetramer and its subunits: characterization of the interaction with tissue plasminogen activator, plasminogen, and plasmin. J Biol Chem. 2003;278:25577–84. doi:10.1074/jbc.M301017200.PubMedCrossRefGoogle Scholar
  30. 30.
    Semov A, Moreno MJ, Onichtchenko A, et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with annexin II and accelerated plasmin formation. J Biol Chem. 2005;280:20833–41. doi:10.1074/jbc.M412653200.PubMedCrossRefGoogle Scholar
  31. 31.
    Rescher U, Ludwig C, Vera Konietzko V, et al. Tyrosine phosphorylation of annexin A2 regulates rho-mediated actin rearrangement and cell adhesion. J Cell Sci. 2008;121:2177–85. doi:10.1242/jcs.028415.PubMedCrossRefGoogle Scholar
  32. 32.
    Ma G, Greenwell-Wild T, Lei K, et al. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med. 2004;200:1337–46. doi:10.1084/jem.20041115.PubMedCrossRefGoogle Scholar
  33. 33.
    Hastie C, Masters JR, Moss SE, et al. IFN-γ reduces cell surface expression of annexin 2 and suppresses the invasive capacity of prostate cancer cells. J Biol Chem. 2008;283:12595–603. doi:10.1074/jbc.M800189200.PubMedCrossRefGoogle Scholar
  34. 34.
    Bastian BC. Annexins in cancer and autoimmune diseases. Cell Mol Life Sci. 1997;53(6):554–6. doi:10.1007/s000180050071.PubMedCrossRefGoogle Scholar
  35. 35.
    Frohlich M, Motte P, Galvin K, et al. Enhanced expression of the protein kinase substrate p36 in human hepatocellular carcinoma. Mol Cell Biol. 1990;10(6):3216–23.PubMedGoogle Scholar
  36. 36.
    Emoto K, Sawada H, Yamada Y, et al. Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma. Anticancer Res. 2001;21(2B):1339–45.PubMedGoogle Scholar
  37. 37.
    Huang Y, Jin Y, Yan CH, et al. Involvement of annexin A2 in p53 induced apoptosis in lung cancer. Mol Cell Biochem. 2008;309(1–2):117–23. doi:10.1007/s11010-007-9649-5.PubMedCrossRefGoogle Scholar
  38. 38.
    Ortiz-Zapater E, Peiro S, Roda O, et al. Tissue plasminogen activator induces pancreatic cancer cell proliferation by a non-catalytic mechanism that requires extracellular signal-regulated kinase 1/2 activation through epidermal growth factor receptor and annexin A2. Am J Pathol. 2007;170:1573–84. doi:10.2353/ajpath.2007.060850.PubMedCrossRefGoogle Scholar
  39. 39.
    Tanaka T, Akatsuka S, Ozeki M, et al. Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene. 2004;23(22):3980–9. doi:10.1038/sj.onc.1207555.PubMedCrossRefGoogle Scholar
  40. 40.
    Gillette JM, Chan DC, Nielsen-Preiss SM. Annexin 2 expression is reduced in human osteosarcoma metastases. J Cell Biochem. 2004;92(4):820–32. doi:10.1002/jcb.20117.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang JH, Hodis HN, Hsiai TK, et al. Role of annexin II in estrogen-induced macrophage matrix metalloproteinase-9 activity: the modulating effect of statins. Atherosclerosis. 2006;189(1):76–82. doi:10.1016/j.atherosclerosis.2005.11.026.CrossRefGoogle Scholar
  42. 42.
    Bhattacharjee G, Ahamed J, Pawlinski R, et al. Factor Xa binding to annexin 2 mediates signal transduction via protease-activated receptor 1. Circ Res. 2008;102:457–64. doi:10.1161/CIRCRESAHA.107.167759.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2009

Authors and Affiliations

  • Hongyu Bao
    • 1
    • 2
  • Miao Jiang
    • 1
    • 2
  • Mingqing Zhu
    • 1
    • 2
  • Fei Sheng
    • 1
    • 2
  • Jia Ruan
    • 3
  • Changgeng Ruan
    • 1
  1. 1.Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  2. 2.Key Laboratory of Thrombosis and HemostasisMinistry of HealthSuzhouChina
  3. 3.Division of Hematology/Oncology, Department of MedicineWeill Cornell Medical College and New York-Presbyterian HospitalNew YorkUSA

Personalised recommendations