International Journal of Hematology

, Volume 89, Issue 3, pp 259–268 | Cite as

Plasma cell leukemia: a highly aggressive monoclonal gammopathy with a very poor prognosis

  • Victor H. Jimenez-Zepeda
  • Virginia J. Dominguez-Martinez
Review Article


Plasma cell leukemia (PCL) is an aggressive variant of multiple myeloma and is characterized by the presence of >20% and/or an absolute number of greater 2 × 10(9)/L plasma cells circulating in the peripheral blood. PCL represents approximately 2–4% of all MM diagnosis and exists in two forms: primary PCL (PPCL, 60% of cases) presents de novo, whereas secondary PCL (SPCL, accounts for the remaining 40%) consists of a leukemic transformation in patients with a previously diagnosed MM. Because the mechanisms contributing to the pathogenesis of PCL are not fully understood, immunophenotyping, genetic evaluation (conventional karyotype, FISH, GEP and array-CGH), and immunohistochemistry are really important tools to investigate why plasma cells escape from bone marrow and become highly aggressive. Since treatment with standard agents and steroids is poorly effective, a combination of new drugs as part of the induction regimens and bone marrow transplant (autologous and allogeneic approaches) could nearly overcome the poor prognosis exhibited by PCL patients.


Plasma cell leukemia Multiple myeloma Bone marrow transplant and prognosis 


  1. 1.
    Dimopoulos MA, Palumbo A, Delasalle KB, et al. Primary plasma cell leukaemia. Br J Haematol. 1994;88:754–9. doi: 10.1111/j.1365-2141.1994.tb05114.x.PubMedCrossRefGoogle Scholar
  2. 2.
    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121:749–57. doi: 10.1046/j.1365-2141.2003.04355.x.
  3. 3.
    Cai ZJ. Primary plasma cell leukemia—a comprehensive analysis of 44 cases. Zhonghua Zhong Liu Za Zhi. 1990;12:314–7.PubMedGoogle Scholar
  4. 4.
    Woodruff RK, Malpas JS, Paxton AM, et al. Plasma cell leukemia (PCL): a report on 15 patients. Blood. 1978;52:839–45.PubMedGoogle Scholar
  5. 5.
    Kosmo MA, Gale RP. Plasma cell leukemia. Semin Hematol. 1987;24:202–8.PubMedGoogle Scholar
  6. 6.
    Hasmoni MH, Wahid FA, Keng CS. Primary plasma cell leukemia presented as progressive paraplegia: a case report. South Med J. 2009;102(1):101–3.PubMedGoogle Scholar
  7. 7.
    Costello R, Sainty D, Bouabdallah R, et al. Primary plasma cell leukaemia: a report of 18 cases. Leuk Res. 2001;25:103–7. doi: 10.1016/S0145-2126(00)00102-8.PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia-Sanz R, Orfao A, Gonzalez M, Tabernero MD, Blade J, Moro MJ, et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood. 1999;93:1032–7.PubMedGoogle Scholar
  9. 9.
    Kyle RA, Maldonado JE, Bayrd ED. Plasma cell leukemia. Report on 17 cases. Arch Int Med. 1974;133:813. doi: 10.1001/archinte.133.5.813.CrossRefGoogle Scholar
  10. 10.
    Baim BJ. Blood cells: a practical guide. Oxford: Blackwell Science; 1995.Google Scholar
  11. 11.
    Colović M, Janković G, Suvajdzić N, Milić N, Dordević V, Janković S. Thirty patients with primary plasma cell leukemia: a single center experience. Med Oncol. 2008;25(2):154–60. doi: 10.1007/s12032-007-9011-5.PubMedCrossRefGoogle Scholar
  12. 12.
    Wohrer S, Ackermann J, Baldia C, et al. Effective treatment of primary plasma cell leukaemia with thalidomide and dexamethasone—a case report. Hematol J. 2004;5(4):361–3. doi: 10.1038/sj.thj.6200375.PubMedCrossRefGoogle Scholar
  13. 13.
    Jain D, Singh T, Akhila L, Ghosh N. Primary plasma cell leukemia in a 30-year-old woman. Indian J Pathol Microbiol. 2008;51(3):456–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Urashima M, Teoh G, Ogata A, et al. Characterization of p16 (INK4A) expression in multiple myeloma and plasma cell leukaemia. Clin Cancer Res. 1997;3:2173–9.PubMedGoogle Scholar
  15. 15.
    Blade J, Kyle RA. Nonsecretory myeloma, immunoglobulin D myeloma and plasma cell leukaemia. Hematol Oncol Clin North Am. 1999;13:1229–79. doi: 10.1016/S0889-8588(05)70125-8.CrossRefGoogle Scholar
  16. 16.
    Bjorkholm M, Osby E. Fludarabine and plasma cell leukemia. Eur J Haematol. 1995;54:334–5.PubMedCrossRefGoogle Scholar
  17. 17.
    San Miguel JF, García-Sanz R, González M, et al. Immunophenotype heterogeneity of multiple myeloma: influence on the biology and clinical course of the disease. Br J Haematol. 1991;77:185. doi: 10.1111/j.1365-2141.1991.tb07975.x.PubMedCrossRefGoogle Scholar
  18. 18.
    San Miguel JF, González M, Gascón A, Moro MJ, Hernández JM, Ortega F, et al. Lymphoid subsets and prognostic factors in multiple myeloma. Br J Haematol. 1991;80:305. doi: 10.1111/j.1365-2141.1992.tb08137.x.CrossRefGoogle Scholar
  19. 19.
    González M, San Miguel JF, Gascón A, Moro MJ, Hernández JM, Ortega F, et al. Increased expression of natural killer-associated and activated antigens in multiple myeloma. Am J Hematol. 1992;39:84. doi: 10.1002/ajh.2830390203.PubMedCrossRefGoogle Scholar
  20. 20.
    García-Sanz R, Orfão A, González M, Moro MJ, Hernández JM, Bŕez A, et al. Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol. 1996;93:81. doi: 10.1046/j.1365-2141.1996.4651006.x.PubMedCrossRefGoogle Scholar
  21. 21.
    Orfão A, García-Sanz R, López-Berges MC, Vidriales MB, González M, Caballero MD, et al. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique. Cytometry. 1994;17:332. doi: 10.1002/cyto.990170409.PubMedCrossRefGoogle Scholar
  22. 22.
    Ocqueteau M, Orfão A, Almeida J, Bladé J, González M, García-Sanz R, et al. Immunophenotype of plasma cells from “monoclonal gammopathy of undetermined significance” (MGUS) patients. Am J Pathol. 1998;152:1655.PubMedGoogle Scholar
  23. 23.
    Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–75. doi: 10.1182/blood-2002-10-3017.PubMedCrossRefGoogle Scholar
  24. 24.
    Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood. 2001;97:822–5. doi: 10.1182/blood.V97.3.822.PubMedCrossRefGoogle Scholar
  25. 25.
    Tiedemann RE, Gonzalez-Paz N, Kyle RA, Santana-Davila R, Price-Troska T, Van Wier SA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22:1044–52. doi: 10.1038/leu.2008.4.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang H, Sloan S, Li D, Patterson B. Genomic aberrations in plasma cell leukemia shown by interphase fluorescence in situ hybridization. Cancer Genet Cytogenet. 2005;156:150–3. doi: 10.1016/j.cancergencyto.2004.05.004.PubMedCrossRefGoogle Scholar
  27. 27.
    Jehn U. Diagnostik und therapie der plasmazell-leukamie. Tumordiagn Ther. 2002;23:135–6. doi: 10.1055/s-2002-33857.CrossRefGoogle Scholar
  28. 28.
    Taniwaki M, Nishida K, Ueda et al. Non random chromosomal rearrangements and their implications in clinical features and outcome in multiple myeloma and plasma cell leukaemia. Leuk Lymphoma. 1996;21:25–30. doi: 10.3109/10428199609067575.
  29. 29.
    Blade J, Kyle RA. Nonsecretory myeloma, immunoglobulin D myeloma and plasma cell leukaemia. Hematol Oncol Clin North Am. 1999;13:1229–79. doi: 10.1016/S0889-8588(05)70125-8.CrossRefGoogle Scholar
  30. 30.
    Lloveras E. Cytogenetic and fluorescence in situ hybridization studies in 60 patients with multiple myeloma and plasma cell leukaemia. Cancer Genet Cytogenet. 2004;148(1):71–6. doi: 10.1016/S0165-4608(03)00233-4.PubMedCrossRefGoogle Scholar
  31. 31.
    Schultheis B, Kramer A, Willer A, Hegenbart U, Goldschmidt H, Hehlmann R. Analysis of p73 and p53 gene deletions in multiple myeloma. Leukemia. 1999;13:2099–103. doi: 10.1038/sj/leu/2401609.PubMedCrossRefGoogle Scholar
  32. 32.
    Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106:2837–40. doi: 10.1182/blood-2005-04-1411.PubMedCrossRefGoogle Scholar
  33. 33.
    Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E, et al. Clinical significance of TP53 mutation in myeloma. Leukemia. 2007;21:582–4. doi: 10.1038/sj.leu.2404524.PubMedCrossRefGoogle Scholar
  34. 34.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–14. doi: 10.1093/emboj/17.17.5001.PubMedCrossRefGoogle Scholar
  35. 35.
    Eymin B, Gazzeri S, Brambilla C, Brambilla E. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors. Oncogene. 2002;21:2750–61. doi: 10.1038/sj.onc.1205359.PubMedCrossRefGoogle Scholar
  36. 36.
    Esteller M, Cordon-Cardo C, Corn PG, Meltzer SJ, Pohar KS, Watkins DN, et al. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res. 2001;61:2816–21.PubMedGoogle Scholar
  37. 37.
    Magdinier F, Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA. 2001;98:4990–5. doi: 10.1073/pnas.101617298.PubMedCrossRefGoogle Scholar
  38. 38.
    Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108:1724–32. doi: 10.1182/blood-2006-03-009910.PubMedCrossRefGoogle Scholar
  39. 39.
    Fonseca R, Van Wier SA, Chng WJ, Ketterling R, Lacy MQ, Dispenzieri A, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20:2034–40. doi: 10.1038/sj.leu.2404403.PubMedCrossRefGoogle Scholar
  40. 40.
    Chang H, Qi X, Trieu Y, Xu W, Reader JC, Ning Y, et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol. 2006;135:486–91. doi: 10.1111/j.1365-2141.2006.06325.x.PubMedCrossRefGoogle Scholar
  41. 41.
    Chang H, Ning Y, Qi X, Yeung J, Xu W. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol. 2007;139:51–4. doi: 10.1111/j.1365-2141.2007.06750.x.PubMedCrossRefGoogle Scholar
  42. 42.
    Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–84. doi: 10.1182/blood-2006-07-038430.PubMedCrossRefGoogle Scholar
  43. 43.
    Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–95. doi: 10.1182/blood-2006-08-040410.PubMedCrossRefGoogle Scholar
  44. 44.
    Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58. doi: 10.1158/0008-5472.CAN-03-2876.PubMedCrossRefGoogle Scholar
  45. 45.
    Chang H, Qi XY, Samiee S, Yi QL, Chen C, Trudel S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant. 2005;36:793–6. doi: 10.1038/sj.bmt.1705131.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang H, Qi X, Yeung J, Reece D, Xu W, Patterson B. Genetic aberrations including chromosome 1 abnormalities and clinical features of plasma cell leukemia. Leuk Res. 2009;33(2):259–62. doi: 10.1016/j.leukres.2008.06.027.PubMedCrossRefGoogle Scholar
  47. 47.
    Ahuja HG, Foti A, Bar-Eli M, Cline MJ. The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood. 1990;75:1684–90.PubMedGoogle Scholar
  48. 48.
    Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18:212–24. doi: 10.1002/humu.1177.PubMedCrossRefGoogle Scholar
  49. 49.
    Ortega MM, Faria RM, Shitara ES, Assis AM, Albuquerque DM, Oliveira JS, et al. N-RAS and K-RAS gene mutations in Brazilian patients with multiple myeloma. Leuk Lymphoma. 2006;47:285–9. doi: 10.1080/10428190500300969.PubMedCrossRefGoogle Scholar
  50. 50.
    Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950–6. doi: 10.1002/cncr.21687.PubMedCrossRefGoogle Scholar
  51. 51.
    Hayman SR, Fonseca R. Plasma cell leukemia. Curr Treat Options Oncol. 2001;2(3):205–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Zangari M, Siegel E, Barlogie B, Anaissie E, Saghafifar F, Fassas A, et al. Thrombogenic activity of doxorubicin in myeloma patients receiving thalidomide: implications for therapy. Blood. 2002;100:1168–71. doi: 10.1182/blood-2002-01-0335.PubMedCrossRefGoogle Scholar
  53. 53.
    Srkalovic G, Cameron MG, Rybicki L, Deitcher SR, Kattke-Marchant K, Hussein MA. Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease. Cancer. 2004;101:558–66. doi: 10.1002/cncr.20405.PubMedCrossRefGoogle Scholar
  54. 54.
    Jiménez VH, Domínguez VJ, Reynoso E. Thalidomide plus dexamethasone for untreated newly diagnosed multiple myeloma patients and deep vein thrombosis. Blood. 2006;108:5093. ASH Annual Meeting Abstracts.Google Scholar
  55. 55.
    Zangari M, Saghafifar F, Anaissie E, et al. Acquired activated protein C resistance in the absence of Factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis. 2002;13:187–92. doi: 10.1097/00001721-200204000-00003.PubMedCrossRefGoogle Scholar
  56. 56.
    Jiménez-Zepeda VH, Domínguez-Martínez VJ. Acquired activated protein C resistance and thrombosis in multiple myeloma patients. Thromb J. 2006;4:11. doi: 10.1186/1477-9560-4-11.PubMedCrossRefGoogle Scholar
  57. 57.
    Kosmo MA, Gale RP. Plasma cell leukemia with IgA paraproteinemia and hyperviscosity. Am J Hematol. 1988;28(2):113–5. doi: 10.1002/ajh.2830280210.PubMedCrossRefGoogle Scholar
  58. 58.
    Raj RS, Najeeb S, Aruna R, et al. Primary plasma cell leukaemia occurring in the young. Indian J Cancer. 2003;40(3):116–7.PubMedGoogle Scholar
  59. 59.
    Johnson MR, Del Carpio-Jayo D, Lin P, Giralt S, Anderlini P, Champlin RE, et al. Primary plasma cell leukemia: morphologic, immunophenotypic, and cytogenetic features of 4 cases treated with chemotherapy and stem cell transplantation. Ann Diagn Pathol. 2006;10(5):263–8. doi: 10.1016/j.anndiagpath.2005.12.011.PubMedCrossRefGoogle Scholar
  60. 60.
    Woodruff RK, Malpas JS, Paxton AM, Lister TA. Plasma cell leukemia (PCL): a report on 15 patients. Blood. 1978;52(4):839–45.PubMedGoogle Scholar
  61. 61.
    Jiménez-Zepeda VH, Domínguez VJ. Plasma cell leukemia: a rare condition. Ann Hematol. 2006;85(4):263–7. doi: 10.1007/s00277-005-0054-4.PubMedCrossRefGoogle Scholar
  62. 62.
    Perez-Andres M, Almeida J, Martin-Ayuso M, et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia. 2005;19:449–55. doi: 10.1038/sj.leu.2403647.PubMedCrossRefGoogle Scholar
  63. 63.
    Ataergin S, Arpaci F, Kaya A, Cetin T, Gunhan O. VAD combination chemotherapy followed by bortezomib may be an effective treatment in secondary plasma cell leukemia. Am J Hematol. 2006;81(12):987–8. doi: 10.1002/ajh.20672.PubMedCrossRefGoogle Scholar
  64. 64.
    Jagannath S. Current standards for first-line therapy of multiple myeloma. Clin Lymphoma Myeloma. 2007;7(Suppl 5):S207–14. doi: 10.3816/CLM.2007.s.024.PubMedCrossRefGoogle Scholar
  65. 65.
    Jimenez-Zepeda VH, Domínguez-Martínez VJ. Vincristine, doxorubicin, and dexamethasone or thalidomide plus dexamethasone for newly diagnosed patients with multiple myeloma? Eur J Haematol. 2006;77(3):239–44. doi: 10.1111/j.1600-0609.2006.00701.x.PubMedCrossRefGoogle Scholar
  66. 66.
    Dimopoulos MA, Kastritis E. Is there still place for VAD as primary treatment for patients with multiple myeloma who are candidates for high-dose therapy? Leuk Lymphoma. 2006;47(11):2271–2. doi: 10.1080/10428190600908620.PubMedCrossRefGoogle Scholar
  67. 67.
    Musto P, Greco MM, Falcone A, Carotenuto M. Treatment of plasma cell leukaemia and resistant/relapsed multiple myeloma with vincristine, mitoxantrone and dexamethasone (VMD protocol). Br J Haematol. 1991;79:655–6. doi: 10.1111/j.1365-2141.1991.tb08101.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Vela-Ojeda J, García-Ruiz Esparza MA, Rosas-Cabral A, Padilla-González Y, García-Chávez J, Tripp-Villanueva F, et al. Intermediate doses of melphalan and dexamethasone are better than vincristine, adriamycin, and dexamethasone (VAD) and polychemotherapy for the treatment of primary plasma cell leukemia. Ann Hematol. 2002;81(7):362–7. doi: 10.1007/s00277-002-0480-5.PubMedCrossRefGoogle Scholar
  69. 69.
    Terpos E, Kastritis E, Roussou M, Heath D, Christoulas D, Anagnostopoulos N, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia. 2008;22(12):2292. doi: 10.1038/leu.2008.288.CrossRefGoogle Scholar
  70. 70.
    Morris TC, Kettle PJ, Drake M, Jones FC, Hull DR, Boyd K, et al. Clarithromycin with low dose dexamethasone and thalidomide is effective therapy in relapsed/refractory myeloma. Br J Haematol. 2008;143(3):349–54. doi: 10.1111/j.1365-2141.2008.07360.x.PubMedCrossRefGoogle Scholar
  71. 71.
    Pönisch W, Rozanski M, Goldschmidt H, Hoffmann FA, Boldt T, Schwarzer A, et al. Combined bendamustine, prednisolone and thalidomide for refractory or relapsed multiple myeloma after autologous stem-cell transplantation or conventional chemotherapy: results of a Phase I clinical trial. Br J Haematol. 2008;143(2):191–200. doi: 10.1111/j.1365-2141.2008.07076.x.PubMedCrossRefGoogle Scholar
  72. 72.
    Cibeira MT, Rosiñol L, Ramiro L, Esteve J, Torrebadell M, Bladé J. Long-term results of thalidomide in refractory and relapsed multiple myeloma with emphasis on response duration. Eur J Haematol. 2006;77(6):486–92. doi: 10.1111/j.0902-4441.2006.t01-1-EJH2783.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Johnston RE, Abdalla SH. Thalidomide in low doses is effective for the treatment of resistant or relapsed multiple myeloma and for plasma cell leukaemia. Leuk Lymphoma. 2002;43(2):351–4. doi: 10.1080/10428190290006143.PubMedCrossRefGoogle Scholar
  74. 74.
    Brück P, Mousset S, Bühme A, Hoelzer D, Atta J. Nonsecretory primary plasma cell leukemia with good response to thalidomide-based treatment. Int J Hematol. 2007;86(1):66–8. doi: 10.1532/IJH97.E0617.PubMedCrossRefGoogle Scholar
  75. 75.
    Wöhrer S, Ackermann J, Baldia C, Seidl S, Raderer M, Simonitsch I, et al. Effective treatment of primary plasma cell leukemia with thalidomide and dexamethasone—a case report. Hematol J. 2004;5(4):361–3. doi: 10.1038/sj.thj.6200375.PubMedCrossRefGoogle Scholar
  76. 76.
    Petrucci MT, Martini V, Levi A, Gallucci C, Palumbo G, Del Bianco P, et al. Thalidomide does not modify the prognosis of plasma cell leukemia patients: experience of a single center. Leuk Lymphoma. 2007;48(1):180–2. doi: 10.1080/10428190601007570.PubMedCrossRefGoogle Scholar
  77. 77.
    Bauduer F. Efficacy of thalidomide in the treatment of VAD-refractory plasma cell leukaemia appearing after autologous stem cell transplantation for multiple myeloma. Br J Haematol. 2002;117(4):996–7. doi: 10.1046/j.1365-2141.2002.03537_4.x.PubMedCrossRefGoogle Scholar
  78. 78.
    Anderson KC. Lenalidomide and thalidomide: mechanisms of action–similarities and differences. Semin Hematol. 2005;42:S3–8. doi: 10.1053/j.seminhematol.2005.10.001.PubMedCrossRefGoogle Scholar
  79. 79.
    Dimopoulos MA, Kastritis E, Rajkumar SV. Treatment of plasma cell dyscrasias with lenalidomide. Leukemia. 2008;22(7):1343–53. doi: 10.1038/leu.2008.123.PubMedCrossRefGoogle Scholar
  80. 80.
    Richardson PG, Schlossman RL, Weller E, Hideshima T, Mitsiades C, Davies F, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–7. doi: 10.1182/blood-2002-03-0996.PubMedCrossRefGoogle Scholar
  81. 81.
    List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355:1456–65. doi: 10.1056/NEJMoa061292.PubMedCrossRefGoogle Scholar
  82. 82.
    Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357:2123–32. doi: 10.1056/NEJMoa070594.PubMedCrossRefGoogle Scholar
  83. 83.
    Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357:2133–42. doi: 10.1056/NEJMoa070596.PubMedCrossRefGoogle Scholar
  84. 84.
    Benson DM Jr, Smith MK. Effectiveness of lenalidomide (Revlimid) for the treatment of plasma cell leukemia. Leuk Lymphoma. 2007;48(7):1423–5. doi: 10.1080/10428190701361851.PubMedCrossRefGoogle Scholar
  85. 85.
    Breitkreutz I, Anderson KC. Thalidomide in multiple myeloma–clinical trials and aspects of drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2008;4(7):973–85. doi: 10.1517/17425255.4.7.973.PubMedCrossRefGoogle Scholar
  86. 86.
    Richardson P, Schlossman RI, Weller E, Hideshima T, Mitsiades C, Davies F. Immunomodulatory derivative of thalidomide CC5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–7. doi: 10.1182/blood-2002-03-0996.PubMedCrossRefGoogle Scholar
  87. 87.
    Muller G, Chen R, Huang SY, Corral LG, Wong LM, Patterson RT. Amino-substituted thalidomide analogs: potent inhibitors of TNF-production. Bioorg Med Chem Lett. 1999;9:1625–30. doi: 10.1016/S0960-894X(99)00250-4.PubMedCrossRefGoogle Scholar
  88. 88.
    Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99:4525–30. doi: 10.1182/blood.V99.12.4525.PubMedCrossRefGoogle Scholar
  89. 89.
    Bensinger W. Stem-cell transplantation for multiple myeloma in the era of novel drugs. J Clin Oncol. 2008;26:480–92. doi: 10.1200/JCO.2007.11.6863.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim SJ, Kim J, Cho Y, Seo BK, Kim BS. Combination chemotherapy with bortezomib, cyclophosphamide and dexamethasone may be effective for plasma cell leukemia. Jpn J Clin Oncol. 2007;37:382–4. doi: 10.1093/jjco/hym037.PubMedCrossRefGoogle Scholar
  91. 91.
    Katodritou E, Verrou E, Gastari V, Hadjiaggelidou C, Terpos E, Zervas K. Response of primary plasma cell leukemia to the combination of bortezomib and dexamethasone: do specific cytogenetic and immunophenotypic characteristics influence treatment outcome? Leuk Res. 2008;32:1153–6. doi: 10.1016/j.leukres.2007.11.010.PubMedCrossRefGoogle Scholar
  92. 92.
    Musto P, Rossini F, Gay F, Pitini V, Guglielmelli T, D’Arena G, et al. Efficacy and safety of bortezomib in patients with plasma cell leukemia. Cancer. 2007;109:2285–90. doi: 10.1002/cncr.22700.PubMedCrossRefGoogle Scholar
  93. 93.
    Bertheau P, Turpin E, Rickman DS, Espie M, de Reynies A, Feugeas JP, et al. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 2007;4:90. doi: 10.1371/journal.pmed.0040090.CrossRefGoogle Scholar
  94. 94.
    Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M, et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol. 2005;129:755–62. doi: 10.1111/j.1365-2141.2005.05519.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Al-Nawakil C, Tamburini J, Bardet V, Chapuis N, Bourry E, Roux C, et al. Bortezomib, doxorubicin and dexamethasone association is an effective option for plasma cell leukemia induction therapy. Leuk Lymphoma. 2008;49(10):2012–4. doi: 10.1080/10428190802290660.PubMedCrossRefGoogle Scholar
  96. 96.
    Reeder CB, Reece DE, Fonseca R, Bergsagel PL, Hentz J, et al. A phase II trial of myeloma induction therapy with cyclophosphamide, bortezomib, and dexamethasone (Cybor-D): improved response over historical lenalidomide-dexamethasone controls. Blood. 2007;110:3601. doi: 10.1182/blood-2007-04-086827. ASH Annual Meeting Abstracts.CrossRefGoogle Scholar
  97. 97.
    Saccaro S, Fonseca R, Veillon DM, Cotelingam J, Nordberg ML, Bredeson C, et al. Primary plasma cell leukemia: report of 17 new cases treated with autologous or allogeneic stem-cell transplantation and review of the literature. Am J Hematol. 2005;78(4):288–94. doi: 10.1002/ajh.20272.PubMedCrossRefGoogle Scholar
  98. 98.
    Nonami A, Miyamoto T, Kuroiwa M, Kunisaki Y, Kamezaki K, Takenaka K, et al. Successful treatment of primary plasma cell leukaemia by allogeneic stem cell transplantation from haploidentical sibling. Jpn J Clin Oncol. 2007;37(12):969–72. doi: 10.1093/jjco/hym130.PubMedCrossRefGoogle Scholar
  99. 99.
    Mohty M, Boiron JM, Damaj G, Michallet AS, Bay JO, Faucher C, et al. Graft-versus-myeloma effect following antithymocyte globulin-based reduced intensity conditioning allogeneic stem cell transplantation. Bone Marrow Transplant. 2004;34:77–84. doi: 10.1038/sj.bmt.1704531.PubMedCrossRefGoogle Scholar
  100. 100.
    Lacy MQ, Dispenzieri A, Gertz MA, Greipp PR, Gollbach KL, Hayman SR, et al. Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc. 2006;81(8):1047–53. doi: 10.4065/81.8.1047.PubMedCrossRefGoogle Scholar
  101. 101.
    Berenson JR, Hillner BE, Kyle RA, Anderson K, Lipton A, Yee GC, et al. American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2002;20(17):3719–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Shipman CM, et al. Anti-tumour activity of bisphosphonates in human myeloma cells. Leuk Lymphoma. 1998;32:129–38.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2009

Authors and Affiliations

  • Victor H. Jimenez-Zepeda
    • 1
  • Virginia J. Dominguez-Martinez
    • 2
  1. 1.Mayo Clinic ScottsdaleScottsdaleUSA
  2. 2.INCMNSZMexico, DFMexico

Personalised recommendations