International Journal of Hematology

, Volume 89, Issue 4, pp 517–522 | Cite as

Low burden of a JAK2-V617F mutated clone in monoclonal haematopoiesis in a Japanese woman with Budd-Chiari syndrome

  • Kohtaro Toyama
  • Masamitsu Karasawa
  • Arito Yamane
  • Hiromi Koiso
  • Akihiko Yokohama
  • Hideki Uchiumi
  • Takayuki Saitoh
  • Hiroshi Handa
  • Ken Sato
  • Hitoshi Takagi
  • Shuichi Miyawaki
  • Hirokazu Murakami
  • Yoshihisa Nojima
  • Norifumi Tsukamoto
Case Report

Abstract

Approximately one-half of the cases of Budd-Chiari syndrome (BCS) are caused by bcr/abl negative chronic myeloproliferative disorders (CMPDs). Furthermore, a mutation in the Janus kinase protein (JAK2-V617F) is detected in half of the patients with BCS. However, whether the JAK2 mutation is the primary event leading to CMPDs and BCS is controversial. We present a report concerning a young woman who suffered from BCS prior to the onset of CMPDs. Analysis of X-chromosome inactivation patterns in this patient, using the human androgen receptor gene demonstrated monoclonal haematopoiesis in her granulocytes. In contrast, she had a low burden of a JAK2-V617F mutation positive clone among granulocyte populations. These results suggest that the JAK2-V617F mutation occurs after the onset of monoclonal haematopoiesis; thus the V617F mutation of JAK2 may not be the primary event in the induction of BCS.

Keywords

Chronic myeloproliferative disorder Budd-Chiari syndrome Clonality analysis JAK2-V617F Endogenous erythroid colony 

References

  1. 1.
    Chiari H. Ueber die selbstandige Phlebitis der Haupstamme der Venae hepaticae als Todesursahe. Beitr Zur Pathologischen Anat. 1899;26:1–18.Google Scholar
  2. 2.
    Budd G. On disease of the liver. 1st ed. London: John Churchill; 1945. p. 146–7.Google Scholar
  3. 3.
    Mitchell MC, Boinott JK, Kaufman S, Cameron JL, Maddrey WC. Budd-Chiari syndrome: etiology, diagnosis and management. Medicine (Baltimore). 1982;61:199–218. doi: 10.1097/00005792-198207000-00001.Google Scholar
  4. 4.
    Dilawari JB, Bambery P, Chawla Y, Kaur U, Bhusnurmath SR, Malhotra HS, et al. Hepatic outflow obstruction (Budd-Chiari syndrome). Experience with 177 patients and a review of the literature. Medicine (Baltimore). 1994;73:21–36. doi: 10.1097/00005792-199401000-00003.Google Scholar
  5. 5.
    Pelletier S, Landi B, Piette JC, Ekert P, Coutellier A, Desmoulins C, et al. Antiphospholipid syndrome as the second cause of non-tumorous Budd-Chiari syndrome. J Hepatol. 1994;21:76–80. doi: 10.1016/S0168-8278(94)80140-1.PubMedCrossRefGoogle Scholar
  6. 6.
    Mahmoud AE, Elias E, Beauchamp N, Wilde JT. Prevalence of the factor V Leiden mutation in hepatic and portal vein thrombosis. Gut. 1997;40:798–800.PubMedCrossRefGoogle Scholar
  7. 7.
    Das M, Carroll SF. Antithrombin III deficiency: an etiology of Budd-Chiari syndrome. Surgery. 1985;97:242–6.PubMedGoogle Scholar
  8. 8.
    De Stefano V, Teofili L, Leone G, Michiels JJ. Spontaneous erythroid colony formation as the clue to an underlying myeloproliferative disorder in patients with Budd-Chiari syndrome or portal vein thrombosis. Semin Thromb Hemost. 1997;23:411–8. doi: 10.1055/s-2007-996117.PubMedCrossRefGoogle Scholar
  9. 9.
    Narayanan Menon KV, Shah V, Kamath PS. The Budd-Chiari syndrome. N Engl J Med. 2004;350:578–85. doi: 10.1056/NEJMra020282.CrossRefGoogle Scholar
  10. 10.
    Breccia M, Morano SG, D’Andrea M, Russo E, D’Elia GM, Alimena G. Budd-Chiari syndrome as the first manifestation of polycythemia vera in young women with inherited thrombophilic state: an aggressive form of myeloproliferative disorder requiring multidisciplinary management. Eur J Haematol. 2005;75:396–400. doi: 10.1111/j.1600-0609.2005.00522.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedGoogle Scholar
  12. 12.
    James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434:1144–8. doi: 10.1038/nature03546.PubMedCrossRefGoogle Scholar
  13. 13.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97. doi: 10.1016/j.ccr.2005.03.023.PubMedCrossRefGoogle Scholar
  14. 14.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90. doi: 10.1056/NEJMoa051113.PubMedCrossRefGoogle Scholar
  15. 15.
    Patel RK, Lea NC, Heneghan MA, Westwood NB, Milojkovic D, Thanigaikumar M, et al. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology. 2006;130:2031–8. doi: 10.1053/j.gastro.2006.04.008.PubMedCrossRefGoogle Scholar
  16. 16.
    Primignani M, Barosi G, Bergamaschi G, Gianelli U, Fabris F, Reati R, et al. Role of the JAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein thrombosis. Hepatology. 2006;44:528–34. doi: 10.1002/hep.21435.CrossRefGoogle Scholar
  17. 17.
    Kiladjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S, et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis. A report on 241 cases. Blood.. 2008;111:4922–9. doi: 10.1182/blood-2007-11-125328.PubMedCrossRefGoogle Scholar
  18. 18.
    Boissinot M, Lippert E, Girodon F, Dobo I, Fouassier M, Masliah C, et al. Latent myeloproliferative disorder revealed by the JAK2–V617F mutation and endogenous megakaryocytic colonies in patients with splanchnic vein thrombosis. Blood. 2006;108:3223–4. doi: 10.1182/blood-2006-05-021527.PubMedCrossRefGoogle Scholar
  19. 19.
    Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–80. doi: 10.1182/blood-2005-11-009605.PubMedCrossRefGoogle Scholar
  20. 20.
    Ro A, Hara M, Takada A. The factor V Leiden mutation and the prothrombin G20210A mutation was not found in Japanese patients with pulmonary thromboembolism. Thromb Haemost. 1999;82:1769.PubMedGoogle Scholar
  21. 21.
    Iwata N, Omine M, Yamauchi H, Maekawa T. Characteristic abnormality of deoxyribonucleoside triphosphate metabolism in megaloblastic anemia. Blood. 1982;60:918–23.PubMedGoogle Scholar
  22. 22.
    Griesshammer M, Klippel S, Strunck E, Temerinac S, Mohr U, Heimpel H, et al. PRV-1 mRNA expression discriminates two types of essential thrombocythemia. Ann Hematol. 2004;83:364–70. doi: 10.1007/s00277-004-0864-9.PubMedCrossRefGoogle Scholar
  23. 23.
    Toyama K, Karasawa M, Yamane A, Irisawa H, Yokohama A, Saitoh T, et al. JAK2–V617F mutation analysis of granulocytes and platelets from patients with chronic myeloproliferative disorders: advantage of studying platelets. Br J Haematol. 2007;139:64–9. doi: 10.1111/j.1365-2141.2007.06755.x.PubMedCrossRefGoogle Scholar
  24. 24.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68. doi: 10.1056/NEJMoa065202.PubMedCrossRefGoogle Scholar
  25. 25.
    Karasawa M, Tsukamoto N, Yamane A, Okamoto K, Maehara T, Yokohama A, et al. Analysis of the distribution of CAG repeats and X-chromosome inactivation status of HUMARA gene in healthy female subjects using improved fluorescence-based assay. Int J Hematol. 2001;74:281–6. doi: 10.1007/BF02982062.PubMedCrossRefGoogle Scholar
  26. 26.
    Bellanné-Chantelot C, Jego P, Lionne-Huyghe P, Tulliez M, Najman A. French group on myeloproliferative disorders. The JAK2 (V617F) mutation may be present several years before the occurrence of overt myeloproliferative disorders. Leukemia. 2008;22:450–1. doi: 10.1038/sj.leu.2404896.PubMedCrossRefGoogle Scholar
  27. 27.
    Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2–V617F to wild type JAK2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40. doi: 10.1182/blood-2007-08-107748.PubMedCrossRefGoogle Scholar
  28. 28.
    Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2-V617F. Leukemia. 2008;22:87–95. doi: 10.1038/sj.leu.2405043.PubMedCrossRefGoogle Scholar
  29. 29.
    Gale RE, Allen AJ, Nash MJ, Linch DC. Long-term serial analysis of X-chromosome inactivation patterns and JAK2–V617F mutant levels in patients with essential thrombocythemia show that minor mutant-positive clones can remain stable for many years. Blood. 2007;109:1241–3. doi: 10.1182/blood-2006-06-029769.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2009

Authors and Affiliations

  • Kohtaro Toyama
    • 1
  • Masamitsu Karasawa
    • 1
  • Arito Yamane
    • 1
  • Hiromi Koiso
    • 1
  • Akihiko Yokohama
    • 1
  • Hideki Uchiumi
    • 1
  • Takayuki Saitoh
    • 1
  • Hiroshi Handa
    • 1
  • Ken Sato
    • 2
  • Hitoshi Takagi
    • 2
  • Shuichi Miyawaki
    • 3
  • Hirokazu Murakami
    • 1
  • Yoshihisa Nojima
    • 1
  • Norifumi Tsukamoto
    • 1
  1. 1.Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
  2. 2.Department of Medicine and Molecular ScienceGunma University Graduate School of MedicineGunmaJapan
  3. 3.Division of Internal MedicineSaiseikai Maebashi HospitalGunmaJapan

Personalised recommendations