Petroleum Science

, Volume 6, Issue 1, pp 1–7 | Cite as

Mobile NMR for geophysical analysis and materials testing

  • Bernhard Blümich
  • Jörg Mauler
  • Agnes Haber
  • Juan Perlo
  • Ernesto Danieli
  • Federico Casanova
Article

Abstract

Initiated by well logging NMR, portable NMR instruments are being developed for a variety of novel applications in materials testing, process analysis and control, which provides new opportunities for geophysical investigations. Small-diameter cylindrical sensors can probe short distances into the walls of slim-line logging holes, and single-sided sensors enable non-destructive testing of large objects. Both sensors are characterized by small sensitive volumes. Barrel-shaped magnets that accommodate the sample in their center have higher sensitivity due to a larger sensitive volume but can accommodate only samples like drill cores, which fit in size to the diameter of the magnet bore. Both types of magnets can be scaled down to the size of a coffee mug to arrive at sub-compact NMR equipment. Portable NMR magnets are reviewed in the context of applications related to geophysics.

Key words

Mobile NMR portable NMR relaxation imaging spectroscopy 

References

  1. Anferova S, Anferov V, Arnold J, et al. Improved Halbach sensor for NMR scanning of drill cores. Magnetic Resonance Imaging. 2007. 25(4): 474–480CrossRefGoogle Scholar
  2. Blümich B, Casanova F and Perlo J. Mobile single-sided NMR. Progress in Nuclear Magnetic Resonance Spectroscopy. 2008a. 52: 197–269CrossRefGoogle Scholar
  3. Blümich B, Casanova F, Danieli E, et al. Moving NMR. AIP Conference Proceedings. 2008b. 1081: 3–6CrossRefGoogle Scholar
  4. Brown R J S, Chandler R, Jackson J A, et al. The history of NMR well logging. Concepts in Magnetic Resonance. 2001. 13(special issue): 340–411Google Scholar
  5. Coates G R, Xiao L Z and Prammer M G. NMR logging principles and applications. Halliburton Energy Services. Houston: Gulf Publishing Company. 1999Google Scholar
  6. Danieli E, Mauler J, Perlo J, et al. Mobile sensor for high-resolution NMR spectroscopy and imaging. submittedGoogle Scholar
  7. Demas V and Prado P. Compact magnets for magnetic resonance. AIP Conference Proceedings. 2008. 1081: 36–39CrossRefGoogle Scholar
  8. Dunn K J, Bergman D J and Latorraca G A. Nuclear Magnetic Resonance: Petrophysical and Logging Applications. Amsterdam: Pergamon Press. 2002Google Scholar
  9. Eidmann G, Savelsberg R, Blümler P, et al. The NMR MOUSE, a mobile universal surface explorer. Journal of Magnetic Resonance, Series A. 1996. 122(1): 104–109CrossRefGoogle Scholar
  10. Haken R, Blümler P and Blümich B. The NMR endoscope. In: Spatially Resolved Magnetic Resonance (Edited by Blümler P, Blümich B, Botto R, et al). Weinheim: Wiley-VCH. 1998. 695–702CrossRefGoogle Scholar
  11. Halbach K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods. 1980. 169(1): 1–10CrossRefGoogle Scholar
  12. Lee H, Sun E, Ham D, et al. Chip-NMR biosensor for detection and molecular analysis of cells. Nature Medicine. 2008. 14: 869–874CrossRefGoogle Scholar
  13. Mauler J. NMR-Tomographie unter Berücksichtigung der Dipol-Dipol-Kopplung. Diploma Thesis. RWTH Aachen University, Aachen. 2006Google Scholar
  14. Perlo J, Casanova F and Blümich B. 3D imaging with a single-sided sensor: an open tomograph. Journal of Magnetic Resonance. 2004. 166(2): 228–235CrossRefGoogle Scholar
  15. Perlo J, Casanova F and Blümich B. Profiles with microscopic resolution by single-sided NMR. Journal of Magnetic Resonance. 2005. 176(1):64–70CrossRefGoogle Scholar
  16. Perlo J, Casanova F and Blümich B. Ex situ NMR in highly homogeneous fi elds: 1H spectroscopy. Science. 2007. 315(5815): 1110–1112CrossRefGoogle Scholar
  17. Presciutti F, Perlo J, Casanova F, et al. Non-invasive NMR profiling of painting layers. Applied Physical Letters. 2008. 93: 033505-1–3CrossRefGoogle Scholar
  18. Raich H and Blümler P. Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas. Concepts in Magnetic Resonance. 2004. 23B(1): 16–25CrossRefGoogle Scholar
  19. Rata D G, Casanova F, Perlo J, et al. Self-diffusion measurements by a mobile single-sided NMR sensor with improved magnetic field gradient. Journal of Magnetic Resonance. 2006. 180(2): 229–235CrossRefGoogle Scholar
  20. Sillerud L O, McDowell A F, Adolphi N L, et al. 1H NMR detection of superparamagnetic nanoparticles at 1 T using a microcoil and novel tuning circuit. Journal of Magnetic Resonance. 2006. 181(2): 181–190CrossRefGoogle Scholar
  21. Song Y. Novel two-dimensional NMR of diffusion and relaxation for material characterization. In: NMR in Chemical Engineering (Edited by Stapf S and Han S). Weinheim: Wiley-VCH. 2006. 163–183CrossRefGoogle Scholar
  22. Zur Y. An algorithm to calculate the NMR signal of a multi spin-echo sequence with relaxation and spin-diffusion. Journal of Magnetic Resonance. 2004. 171(1): 97–106CrossRefGoogle Scholar

Copyright information

© China University of Petroleum (Beijing) and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Bernhard Blümich
    • 1
  • Jörg Mauler
    • 1
  • Agnes Haber
    • 1
  • Juan Perlo
    • 1
  • Ernesto Danieli
    • 1
  • Federico Casanova
    • 1
  1. 1.Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityAachenGermany

Personalised recommendations