Der Kardiologe

, Volume 7, Issue 2, pp 141–156 | Cite as

Empfehlungen der Projektgruppe Prävention der DGK zur risikoadjustierten Prävention von Herz- und Kreislauferkrankungen

Teil 3: Fettstoffwechselstörungen, arterielle Hypertonie und Glukosestoffwechsel
  • H. Gohlke
  • C. Albus
  • G. Bönner
  • H. Darius
  • S. Eckert
  • C. Gohlke-Bärwolf
  • D. Gysan
  • H. Hahmann
  • M. Halle
  • R. Hambrecht
  • P. Mathes
  • H.-G. Predel
  • G. Sauer †
  • C. von Schacky
  • G. Schuler
  • J. Siegrist
  • J. Thiery
  • D. Tschöpe
  • H. Völler
  • A. Wirth
CME Zertifizierte Fortbildung
  • 341 Downloads

Zusammenfassung

Fettstoffwechselstörungen

Der Zusammenhang zwischen kardiovaskulärem Risiko und der Höhe des LDL-Spiegels ist zweifelsfrei nachgewiesen. Der Nutzen einer Absenkung des LDL-Cholesterins, vor allem mit Statinen, zur Minderung des kardiovaskulären Risikos entspricht einer Klasse-I-Empfehlung auf dem Evidenzlevel A. Die LDL-Zielwerte richten sich nach dem individuellen Risiko. Für HDL und Triglyzeride werden keine Therapieziele definiert, sondern lediglich Bereiche angegeben, bei denen von einem erhöhten kardiovaskulären Risiko auszugehen ist. Die leitliniengerechte medikamentöse LDL-Absenkung mit anzustrebenden niedrigen LDL-C-Zielwerten wird durch die preiswerte Verfügbarkeit des generischen Atorvastatins als stark wirksamem Statin deutlich erleichtert.

Arterielle Hypertonie

Die arterielle Hypertonie ist einer der wesentlichen Risikofaktoren für Herzinfarkt, Apoplex und Demenz. Sie liegt vor, wenn in der Arztpraxis der Blutdruck wiederholt größer oder gleich 140 mmHg systolisch oder 90 mmHg diastolisch gemessen wird. Nach Ausschluss einer sekundären Hypertonie und Bestimmung der Endorganschäden kann das kardiovaskuläre Gesamtrisiko definiert werden. Dieses und eventuell bestehende Begleiterkrankungen des Patienten bestimmen die antihypertensive Therapie, deren Basis stets nichtmedikamentöse Maßnahmen darstellen. Zur Pharmakotherapie werden überwiegend fixe Medikamentenkombinationen empfohlen. In regelmäßigen Abständen ist eine Nachüberwachung der Therapie bezüglich Wirksamkeit, Verträglichkeit und Adhärenz erforderlich.

Glukosestoffwechsel

Schon früh in der Entwicklung eines Typ-2-Diabetes mellitus können kardiovaskuläre Komplikationen auftreten. Je frühzeitiger die Diagnose und eine normnahe Blutglukoseeinstellung, desto günstiger die Prognose. Der HbA1c-Zielwert für Diabetespatienten liegt unter 7% (53 mmol/mol), in Einzelfällen, (insbesondere bei neu aufgetretenem Diabetes) noch tiefer. Hypoglykämien sollten jedoch wegen des hohen assoziierten kardialen Risikos unbedingt vermieden werden. Statine sollten in aller Regel gegeben werden, um die LDL-Zielwerte von unter 70 mg/dl (1,8 mmol/l) zu erreichen. Zusätzliche kardiovaskuläre Risikofaktoren oder Endorganschäden erhöhen das Risiko und sind nach den evidenzbasierten Therapieempfehlungen zu behandeln.

Schlüsselworter

Cholesterin Risikokategorien Antihypertensiva Diabetes mellitus Hypoglykämie 

Recommendations of the project group prevention of the German Cardiac Society (DGK) on risk adjusted prevention of cardiovascular diseases

Part 3: Dyslipidemia, arterial hypertension and glucose metabolism

Abstract

Dyslipidemia

There is a strong correlation between low-density lipoproteins (LDL) cholesterol level and cardiovascular risk. Risk adjusted treatment, predominantly with statins, improves prognosis (Class I recommendation, evidence level A). The LDL targets depend on the individual risk. For HDL und triglycerides no target levels but only levels below (for HDL-C) or above which an increased cardiovascular risk is documented are defined. The guideline conforming LDL lowering with the defined LDL target levels requires the availability of highly effective statins for all patients.

Arterial hypertension

Arterial hypertension is one of the major cardiovascular risk factors leading to myocardial infarction, stroke or dementia. Repeated blood pressure readings of 140/90 mmHg or more confirm the diagnosis hypertension and should lead to further investigations to exclude secondary forms of hypertension or already established end organ damage. Antihypertensive drugs are prescribed according to the individual cardiovascular risk and additional diseases. Life style modifications markedly reduce blood pressure even in patients receiving blood pressure lowering drugs. A combination of drugs is needed in most cases and fixed combinations are recommended. Follow-up has to be performed regularly to control blood pressure response, possible side effects and patient adherence to therapy.

Glucosemetabolism and diabetes

The stages in the manifestation of type 2 diabetes mellitus develop over several years ranging from impaired fasting glucose to impaired glucose metabolism and manifest diabetes mellitus. Cardiovascular complications can occur early and the earlier the diagnosis is confirmed with subsequent near normal blood glucose adjustment, the more favorable the prognosis. The glycated hemoglobin (HbA1c) target for patients with established type 2 diabetes is less than 7% (53 mmol/mol). In individual cases particularly with new onset diabetes lower values can be attempted. Particular care should be taken to avoid hypoglycemic episodes because of the high associated risk. Statins should be prescribed to reach the LDL-C target of <70 mg/dl (1.8 mmol/l). Additional cardiovascular risk factors increase cardiovascular risk and are to be treated according to the evidence-based therapy recommendations.

Keywords

Cholesterol Risk category Antihypertensive agents Diabetes mellitus Hypoglycemia 

Literatur

  1. 1.
    Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818PubMedCrossRefGoogle Scholar
  2. 2.
    Wierzbicki AS, Humphries SE, Minhas R; Guideline Development Group (2008) Familial hypercholesterolaemia: summary of NICE guidance. BMJ 337:509–510CrossRefGoogle Scholar
  3. 3.
    Neil A, Cooper J, Betteridge J et al (2008) Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J 29:2625–2633PubMedCrossRefGoogle Scholar
  4. 4.
    Rees A (2008) Familial hypercholesterolaemia: underdiagnosed and undertreated. Eur Heart J 29(21):2583–2584PubMedCrossRefGoogle Scholar
  5. 5.
    Erqou S, Kaptoge S, Perry PL et al (2009) Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302:412–423PubMedCrossRefGoogle Scholar
  6. 6.
    Humphries SE, Whittall RA, Hubbart CS et al (2006) Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet 43:943–949PubMedCrossRefGoogle Scholar
  7. 7.
    The Emerging Risk Factors Collaboration (2012) Lipid-related markers and cardiovascular disease prediction. JAMA 307:2499–2506CrossRefGoogle Scholar
  8. 8.
    Grundy SM (2012) Use of emerging lipoprotein risk factors in assessment of cardiovascular risk. JAMA 307:2540–2542PubMedGoogle Scholar
  9. 9.
    Perk J, De Backer G, Gohlke H et al (2012) European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 33:1635–1701PubMedCrossRefGoogle Scholar
  10. 10.
    Taskinen MR, Barter PJ, Ehnholm C et al (2010) Ability of traditional lipid ratios and apolipoprotein ratios to predict cardiovascular risk in people with type 2 diabetes. Diabetologia 53:1846–1855PubMedCrossRefGoogle Scholar
  11. 11.
    Keil U, Fitzgerald AF, Gohlke H et al (2005) Risikoabschätzung tödlicher Herz-Kreislauf-Erkrankungen. Dtsch Arztebl 102(25):A1808–A1812Google Scholar
  12. 12.
    Gohlke H, Winter M, Karoff M, Held K (2007) CARRISMA: a new tool to improve risk stratification and guidance of patients in cardiovascular risk management in primary prevention. Eur J Cardiovasc Prev Rehabil 14:141–148PubMedCrossRefGoogle Scholar
  13. 13.
    Graham I, Atar D, Borch-Johnsen K et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur Heart J 19:2375–2414Google Scholar
  14. 14.
    Tall AR (2007) CETP inhibitors to increase HDL cholesterol levels. N Engl J Med 356:1364–1366PubMedCrossRefGoogle Scholar
  15. 15.
    Landmesser U, Eckardstein A von, Kastelein J et al (2012) Increasing high-density lipoprotein cholesterol by cholesteryl ester transfer protein-inhibition: a rocky road and lessons learned? The early demise of the dal-HEART programme. Eur Heart J 33:1712–1715PubMedCrossRefGoogle Scholar
  16. 16.
    ORIGIN Trial Investigators; Bosch J, Gerstein HC, Dagenais GR et al (2012) n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med 367:309–318CrossRefGoogle Scholar
  17. 17.
    Jaeger BR, Richter Y, Nagel D et al (2009) Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pract Cardiovasc Med 6(3):229–239PubMedCrossRefGoogle Scholar
  18. 18.
    Cholesterol Treatment Trialists‘ (CTT) Collaboration; Baigent C, Blackwell L, Emberson J et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681CrossRefGoogle Scholar
  19. 19.
    Gohlke H (2008) Kann man durch Prävention Geld einsparen? Kardiologie up2date 4:201–205CrossRefGoogle Scholar
  20. 20.
    Lazar LD, Pletcher MJ, Coxson PG et al (2011) Cost-effectiveness of statin therapy for primary prevention in a low-cost statin era. Circulation 124:146–153PubMedCrossRefGoogle Scholar
  21. 21.
    Jones PH, Davidson MH, Stein EA et al; STELLAR Study Group (2003) Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol 92:152–160PubMedCrossRefGoogle Scholar
  22. 22.
    Egan A, Colman E (2011). Weighing the benefits of high-dose simvastatin against the risk of myopathy. N Engl J Med 365:285–287PubMedCrossRefGoogle Scholar
  23. 23.
    Fonseca VA, Handelsman Y, Staels B (2010) Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab 12:384–392PubMedCrossRefGoogle Scholar
  24. 24.
    Levy P (2010) Review of studies on the effect of bile acid sequestrants in patients with type 2 diabetes mellitus. Metab Syndr Relat Disord 8(Suppl 1):S9–S13PubMedCrossRefGoogle Scholar
  25. 25.
    Baigent C, Landray MJ, Reith C et al; SHARP investigators (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377:2181–2192PubMedCrossRefGoogle Scholar
  26. 26.
    Wanner C, Krane V, März W et al; German Diabetes and Dialysis Study Investigators (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353:238–248PubMedCrossRefGoogle Scholar
  27. 27.
    Fellström BC, Jardine AG, Schmieder RE et al; AURORA Study Group (2009) Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 360:1395–1407PubMedCrossRefGoogle Scholar
  28. 28.
    AIM-HIGH Investigators; Boden WE, Probstfield JL, Anderson T et al (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365:2255–2267CrossRefGoogle Scholar
  29. 29.
    ACCORD Study Group; Ginsberg HN, Elam MB, Lovato LC et al (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574CrossRefGoogle Scholar
  30. 30.
    Jun M, Foote C, Lv J et al (2010) Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375:1875–1884PubMedCrossRefGoogle Scholar
  31. 31.
    Law M (2000) Plant sterol and stanol margarines and health. BMJ 320:861–864PubMedCrossRefGoogle Scholar
  32. 32.
    Teupser D, Baber R, Ceglarek U et al (2010) Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ Cardiovasc Genet 3:331–339PubMedCrossRefGoogle Scholar
  33. 33.
    Chobanian AV, Bakris GL, Black HR et al (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572PubMedCrossRefGoogle Scholar
  34. 34.
    MacMahon S, Peto R, Collins R et al (1990) Blood pressure, stroke and coronary heart disease. Lancet 335:765–774PubMedCrossRefGoogle Scholar
  35. 35.
    Rosenthal J, Kolloch R (2004) Arterielle Hypertonie, 4. Aufl. Springer, Berlin HeidelbergGoogle Scholar
  36. 36.
    Hentschel F, Supprian T, Frölich L (2005) Alzheimer Demenz versus vaskuläre Demenz – Dichotomie oder Interaktion? Fortschr Neurol Psychiatr 73:317–326PubMedCrossRefGoogle Scholar
  37. 37.
    Collins R, Petro R, MacMahon S (1990) Blood pressure, stroke and coronary heart disease. Lancet 335:827–838PubMedCrossRefGoogle Scholar
  38. 38.
    Peila R, White LR, Masaki K et al (2006) Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke 37:1165–1170PubMedCrossRefGoogle Scholar
  39. 39.
    Deutsche Hochdruckliga – Deutsche Hypertonie Gesellschaft (2008) Leitlinien zur Behandlung der arteriellen Hypertonie. http://www.hochdruckliga.deGoogle Scholar
  40. 40.
    Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25:1105–1187PubMedCrossRefGoogle Scholar
  41. 41.
    Deutsche Hochdruckliga e. V. DHL – Deutsche Hypertonie Gesellschaft (2010) Leitlinien Hypertonie. Auflage 2010Google Scholar
  42. 42.
    Klaus D (1997) Manuale hypertonologicum. Dustri, DeisenhofenGoogle Scholar
  43. 43.
    Deutsche Hochdruckliga – Deutsche Gesellschaft für Hypertonie und Prävention (2011) Neue Entwicklungen in der Hochdrucktherapie: Eine Bewertung durch die Deutsche Hochdruckliga e. V. DHL® – Deutsche Gesellschaft für Hypertonie und Prävention. http://www.hochdruckliga.deGoogle Scholar
  44. 44.
    Mancia G, Laurent S, Agabiti-Rosei E et al (2009) Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. Blood Press 18:308–347PubMedCrossRefGoogle Scholar
  45. 45.
    Wassertheil-Smoller S, Blaufox MD, Oberman AS et al (1992) The Trial of Antihypertensive Interventions and Management (TAIM) study. Adequate weight loss, alone and combined with drug therapy in the treatment of mild hypertension. Arch Intern Med 152:131–136PubMedCrossRefGoogle Scholar
  46. 46.
    Gesundheitsberichterstattung des Bundes (2011) GBE kompakt, Ausgabe03/2011: Diabetes mellitus in DeutschlandGoogle Scholar
  47. 47.
    Janka UW (2011) Aktuelle Daten zur Häufigkeit des Diabetes in Deutschland. Diabetes-Congress-Report 5:10–13Google Scholar
  48. 48.
    Schulze MB, Rathmann W, Giani G et al (2010) Diabetesprävalenz: Verlässliche Schätzungen stehen noch aus. Dtsch Arztebl 107(36):A1694–A1696Google Scholar
  49. 49.
    Mooy JM, Grootenhuis PA, Vries H de et al (1995) Prevalance and determinants of glucose intolerance in a Dutch caucasian population. The Hoorn Study. Diabetes Care 18:1270–1273PubMedCrossRefGoogle Scholar
  50. 50.
    Knowler WC, Barrett-Connor E, Fowler SE et al; Diabetes Prevention Program Group (2002) Reduction in the incidence of type 2 diabetes mellitus with lifestyle intervention or metformin. N Engl J Med 346(6):393–403PubMedCrossRefGoogle Scholar
  51. 51.
    Alberti KG, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645PubMedCrossRefGoogle Scholar
  52. 52.
    Rydén L, Standl E, Bartnik M et al (2007) Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 28:88–136PubMedCrossRefGoogle Scholar
  53. 53.
    Matthaei S, Bierwirth R, Fritsche A et al (2010) Behandlung des Diabetes mellitus Typ 2. Diabetologie 5:127–132CrossRefGoogle Scholar
  54. 54.
    Matthaei S, Bierwirth R, Fritsche A et al (2011) Behandlung des Diabetes mellitus Typ 2. Diabetologie 6:131–136CrossRefGoogle Scholar
  55. 55.
    Roumen C, Feskens EJ, Corpekleijn E et al (2011) Predictors of lifestyle intervention outcome and dropout: the SLIM study. Eur J Clin Nutr 10:1141–1147CrossRefGoogle Scholar
  56. 56.
    Thomas GN, Jiang CQ, Taheri S et al (2010) A systemetic review of lifestyle modification and glucose intolerance in the prevention of type 2 diabetes. Curr Diabetes Rev 6:378–387PubMedCrossRefGoogle Scholar
  57. 57.
    Koyasu M, Ischi H, Takemoto K et al (2011) Impact of arcabose on carotid intima-media thickness in patients with newly diagnosed impaired glucose tolerance or mild type 2 diabetes mellitus. Clin Ther 9:1610–1617Google Scholar
  58. 58.
    Rudovich NN, Weikert MO, Pivovarora O et al (2011) Effects of acarbose treatment on markers of insulin sensitivity and systemic inflammation. Diabetes Technol Ther 6:615–623CrossRefGoogle Scholar
  59. 59.
    DeFronzo RA, Tripathy D, Schwenke DC et al (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115PubMedCrossRefGoogle Scholar
  60. 60.
    Mizoguchi M, Tahara N, Tahara A et al (2011) Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes, a prospective randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid atery and ascending aorta. JACC Cardiovasc Imaging 10:1110–1118CrossRefGoogle Scholar
  61. 61.
    Löwel H, Stieber J, Koenig W et al (1999) Das Diabetes-bedingte Herzinfarktrisiko in einer süddeutschen Bevölkerung: Ergebnisse der MONICA-Augsburg-Studien 1985–1994. Diabetes Stoffw 8:11–21Google Scholar
  62. 62.
    König W (2002) Diabetes mellitus und koronare Herzkrankheit: epidemiologische Daten. J Kardiol 9:548–550Google Scholar
  63. 63.
    Haffner SE, Lehto S, Rönnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234PubMedCrossRefGoogle Scholar
  64. 64.
    Dormandy JA, Charbonnel B, Eckland DJ et al; PROactive investigators (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRefGoogle Scholar
  65. 65.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications inpatients with type 2 diabetes (UKPDS33). Lancet 352:837–853CrossRefGoogle Scholar
  66. 66.
    Holman RR, Paul SK, Bethel MA et al (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589PubMedCrossRefGoogle Scholar
  67. 67.
    Hanefeld M, Cagatay M, Petrowitsch T et al (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 25:10–16PubMedCrossRefGoogle Scholar
  68. 68.
    Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077PubMedCrossRefGoogle Scholar
  69. 69.
    Colhoun HM, Betteridge DJ, Durrington PN et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696PubMedCrossRefGoogle Scholar
  70. 70.
    Zuanetti G, Latini R, Maggioni AP et al (1997) Effect of the ACE inhibitor lisinopril on mortality in diabetic patients with acute myocardial infarction: data from the GISSI-3 study. Circulation 96:4239–4245PubMedCrossRefGoogle Scholar
  71. 71.
    Marso SP, Lincoff M, Ellis SG et al (1999) Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus. Circulation 100:2477–2484PubMedCrossRefGoogle Scholar
  72. 72.
    Corpus RA, George PB, House JA et al (2004) Optimal glycemic control is associated with a lower rate of target vessel revascularization in treated type II diabetic patients undergoing elective percutaneous coronary intervention. J Am Coll Cardiol 43:8–14PubMedCrossRefGoogle Scholar
  73. 73.
    Kornowski R, Fuchs S (2004) Optimization of glycemic control and restenosis prevention in diabetic patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 43:15–17PubMedCrossRefGoogle Scholar
  74. 74.
    O‚Keefe JH, Blackstone EH, Sergeant P et al (1998) A risk-adjusted long-term study comparing coronary angioplasty and coronary bypass surgery. Eur Heart J 19:1696–1703CrossRefGoogle Scholar
  75. 75.
    Mehilli J, Kastrati A, Schühlen H et al (2004) Randomized clinical trial of abciximab in diabetic patients undergoing elective percutaneous coronary interventions after treatment with a high loading dose of clopidogrel. Circulation 110:3627–3635PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Gohlke
    • 1
    • 2
  • C. Albus
    • 3
  • G. Bönner
    • 4
  • H. Darius
    • 5
  • S. Eckert
    • 6
  • C. Gohlke-Bärwolf
    • 2
  • D. Gysan
    • 7
  • H. Hahmann
    • 8
  • M. Halle
    • 9
  • R. Hambrecht
    • 10
  • P. Mathes
    • 11
  • H.-G. Predel
    • 12
  • G. Sauer †
    • 13
  • C. von Schacky
    • 14
  • G. Schuler
    • 15
  • J. Siegrist
    • 16
  • J. Thiery
    • 17
  • D. Tschöpe
    • 6
  • H. Völler
    • 18
  • A. Wirth
    • 19
  1. 1.Ballrechten-DottingenDeutschland
  2. 2.Herz-Zentrum Bad KrozingenBad KrozingenDeutschland
  3. 3.Klinik und Poliklinik für Psychosomatik und PsychotherapieUniversitätsklinikum KölnKölnDeutschland
  4. 4.Park-KlinikumBad KrozingenDeutschland
  5. 5.Klinik für Kardiologie, Angiologie und IntensivmedizinVivantes Klinikum NeuköllnBerlinDeutschland
  6. 6.Herz- und Diabeteszentrum Nordrhein-WestfalenBad OeynhausenDeutschland
  7. 7.Kardiologisch-angiologische GemeinschaftspraxisKöln-PollDeutschland
  8. 8.Klinik SchwabenlandIsny-NeutrauchburgDeutschland
  9. 9.Präventive und Rehabilitative SportmedizinKlinikum rechts der Isar, Technische Universität MünchenMünchenDeutschland
  10. 10.Klinik für KardiologieKlinikum links der WeserBremenDeutschland
  11. 11.Kardiologische AbteilungRehabilitationszentrum MünchenMünchenDeutschland
  12. 12.Deutsche Sporthochschule KölnKölnDeutschland
  13. 13.MiesbachDeutschland
  14. 14.Abteilung Präventive KardiologieLudwig-Maximilians-UniversitätMünchenDeutschland
  15. 15.Klinik für Innere Medizin/KardiologieHerzzentrum LeipzigLeipzigDeutschland
  16. 16.Institut für MedizinsoziologieUniversitätsklinikum DüsseldorfDüsseldorfDeutschland
  17. 17.Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare DiagnostikUniversitätsklinikum LeipzigLeipzigDeutschland
  18. 18.Department für RehabilitationswissenschaftenUniversität PotsdamPotsdamDeutschland
  19. 19.Deutsche Adipositas-GesellschaftBad RothenfeldeDeutschland

Personalised recommendations