Der Kardiologe

, Volume 6, Issue 2, pp 105–125

Konsensusempfehlungen der DRG/DGK/DGPK zum Einsatz der Herzbildgebung mit Computertomographie und Magnetresonanztomographie

  • S. Achenbach
  • J. Barkhausen
  • M. Beer
  • P. Beerbaum
  • T. Dill
  • J. Eichhorn
  • S. Fratz
  • M. Gutberlet
  • M. Hoffmann
  • A. Huber
  • P. Hunold
  • C. Klein
  • G. Krombach
  • K.-F. Kreitner
  • T. Kühne
  • J. Lotz
  • D. Maintz
  • H. Marholdt
  • N. Merkle
  • D. Messroghli
  • S. Miller
  • I. Paetsch
  • P. Radke
  • H. Steen
  • H. Thiele
  • S. Sarikouch
  • R. Fischbach
Konsensuspapiere

Zusammenfassung

Die kardiale Schnittbilddiagnostik mit der Magnetresonanztomographie (MRT) und Computertomographie (CT) hat sich in der letzten Dekade technisch rasant weiterentwickelt. Diese Verbesserungen und die breite Verfügbarkeit moderner CT- und MRT-Systeme haben dazu geführt, dass beide Verfahren regelmäßig in der klinischen Routine eingesetzt werden. Dieses deutsche Konsensuspapier wurde daher gemeinsam von der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung (DGK), der Deutschen Röntgengesellschaft (DRG) und der Deutschen Gesellschaft für Pädiatrische Kardiologie (DGPK) erarbeitet und orientiert sich nicht an Modalitäten und Methoden, sondern gliedert sich nach großen Krankheitsgruppen. Behandelt werden die koronare Herzerkrankung, Kardiomyopathien, Herzrhythmusstörungen, Klappenvitien, Perikarderkrankungen, erworbene und strukturellen Veränderungen sowie angeborene Herzfehler. Für unterschiedliche klinische Szenarien werden die beiden Schnittbildmodalitäten CT und MRT vergleichend gegenübergestellt und in einem kurzen Textfeld bewertet.

Schlüsselwörter

Magnetresonanztomographie (MRT) Computertomographie (CT) Klinische Routine Krankheitsgruppen Klinische Szenarien 

Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging

Abstract

Cardiac magnetic resonance imaging (MRI) and computed tomography (CT) have developed rapidly in the last decade. Technical improvements and broad availability of modern CT and MRI scanners have led to an increasing and regular use of both diagnostic methods in the clinical routine. Therefore, this German consensus document has been developed in collaboration by the German Cardiac Society, the German Radiology Society and the German Society for Pediatric Cardiology. It is not oriented to modalities and methods but more to disease entities. This consensus document deals with coronary artery disease, cardiomyopathy, arrhythmia, valvular disease, pericardial disease and structural changes, as well as with congenital heart defects. For different clinical scenarios both imaging modalities CT and MRI are compared and evaluated in the specific context.

Keywords

Magnetic resonance imaging (MRI) Computed tomography (CT) Clinical routine Disease entities Clinical scenarios 

Literatur

  1. 1.
    Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345Google Scholar
  2. 2.
    Arad Y, Goodman KJ, Roth M et al (2005) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 46(1):158–165Google Scholar
  3. 3.
    Park R, Detrano R, Xiang M et al (2002) Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 106(16):2073–2077Google Scholar
  4. 4.
    Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291(2):210–215Google Scholar
  5. 5.
    Taylor AJ, Bindeman J, Feuerstein I et al (2005) Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 46(5):807–814Google Scholar
  6. 6.
    Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56(25):2182–2199Google Scholar
  7. 7.
    Erbel R, Möhlenkamp S, Moebus S et al (2010) Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 56(17):1397–1406Google Scholar
  8. 8.
    Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52(25):2135–2144Google Scholar
  9. 9.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52(21):1724–1732Google Scholar
  10. 10.
    Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94(11):1386–1393Google Scholar
  11. 11.
    Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol100(4):701–706Google Scholar
  12. 12.
    Catalan P, Leta R, Hidalgo A et al (2011) Ruling out coronary artery disease with noninvasive coronary multidetector CT angiography before noncoronary cardiovascular surgery. Radiology 258(2):426–434Google Scholar
  13. 13.
    Poldermans D, Bax JJ, Boersma E et al (2009) Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery: the task force for preoperative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery of the European Society of Cardiology (ESC) and European Society of Anaesthesiology (ESA). Eur Heart J 30(22):2769–2812Google Scholar
  14. 14.
    Rerkpattanapipat P, Morgan TM, Neagle CM et al (2002) Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 90(4):416–419Google Scholar
  15. 15.
    Jahnke C, Nagel E, Gebker R et al (2007) Prognostic value of cardiac magnetic resonance stress tests. Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776Google Scholar
  16. 16.
    Bernhardt P, Engels T, Levenson B et al (2006) Prediction of necessity for coronary artery revascularization by adenosine contrast-enhanced magnetic resonance imaging. Int J Cardiol 112(2):184–190Google Scholar
  17. 17.
    Costa MA, Shoemaker S, Futamatsu H et al (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50(6):514–522Google Scholar
  18. 18.
    Gebker R, Jahnke C, Manka R et al (2008) Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease. Circ Cardiovasc Imaging 1(2):122–130Google Scholar
  19. 19.
    Paetsch I, Jahnke C, Wahl A et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110(7):835–842Google Scholar
  20. 20.
    Schwitter J, Wacker C, Rossum A van et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489Google Scholar
  21. 21.
    Bodi V, Sanchis J, Lopez-Lereu MP et al (2007) Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol 50:1174–1179Google Scholar
  22. 22.
    Korosoglou G, Elhmidi Y, Steen H et al (2010) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56(15):1225–1234Google Scholar
  23. 23.
    Bodi V, Husser O, Sanchis J et al (2012) Prognostic implications of dipyridamole cardiac MR imaging: a prospective multicenter registry. Radiology 262:91–100Google Scholar
  24. 24.
    Greenwood JP, Maredia N, Younger JF et al (2011) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 4;379:453–460Google Scholar
  25. 25.
    Meijboom WB, Mieghem CA van, Mollet NR et al (2007) 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 50(15):1469–1475Google Scholar
  26. 26.
    Hadamitzky M, Freissmuth B, Meyer T et al (2009) Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2(4):404–411Google Scholar
  27. 27.
    Min JK, Shaw LJ, Berman DS et al (2008) Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of medicare category III transaction codes. Am J Cardiol 102(6):672–678Google Scholar
  28. 28.
    Ostrom MP, Gopal A, Ahmadi N et al (2008) Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol 52(16):1335–1343Google Scholar
  29. 29.
    Gopal A, Nasir K, Ahmadi N et al (2009) Cardiac computed tomographic angiography in an outpatient setting: an analysis of clinical outcomes over a 40-month period. J Cardiovasc Comput Tomogr 3(2):90–95Google Scholar
  30. 30.
    Shaw LJ, Berman DS, Hendel RC et al (2008) Prognosis by coronary computed tomographic angiography: matched comparison with myocardial perfusion single-photon emission computed tomography. J Cardiovasc Comput Tomogr 2(2):93–101Google Scholar
  31. 31.
    Werkhoven JM van, Gaemperli O, Schuijf JD et al (2009) Multislice computed tomography coronary angiography for risk stratification in patients with an intermediate pretest likelihood. Heart 95(19):1607–1611Google Scholar
  32. 32.
    Shuman WP, May JM, Branch KR et al (2010) Negative ECG-gated cardiac CT in patients with low-to-moderate risk chest pain in the emergency department: 1-year follow-up. AJR Am J Roentgenol 195(4):923–927Google Scholar
  33. 33.
    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56(22):1864–1894Google Scholar
  34. 34.
    Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50(14):1343–1353Google Scholar
  35. 35.
    Hines JL, Danciu SC, Shah M et al (2008) Use of multidetector computed tomography after mildly abnormal myocardial perfusion stress testing in a large single-specialty cardiology practice. J Cardiovasc Comput Tomogr 2(6):372–378Google Scholar
  36. 36.
    Danciu SC, Herrera CJ, Stecy PJ et al (2007) Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheterization may be safely avoided. Am J Cardiol 100(11):1605–1608Google Scholar
  37. 37.
    Abidov A, Gallagher MJ, Chinnaiyan KM et al (2009) Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J Nucl Cardiol 16(5):701–713Google Scholar
  38. 38.
    Cury RC, Shash K, Nagurney JT et al (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118(8):837–844Google Scholar
  39. 39.
    Hombach V, Merkle N, Kestler HA et al (2008) Characterization of patients with acute chest pain using cardiac magnetic resonance imaging. Clin Res Cardiol 97(10):760–767Google Scholar
  40. 40.
    Lockie T, Nagel E, Redwood S, Plein S (2009) Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation 119(12):1671–1681Google Scholar
  41. 41.
    Hollander JE, Chang AM, Shofer FS et al (2009) One-year outcomes following coronary computerized tomographic angiography for evaluation of emergency department patients with potential acute coronary syndrome. Acad Emerg Med 16(8):693–698Google Scholar
  42. 42.
    Hollander JE, Chang AM, Shofer FS et al (2009) Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Ann Emerg Med 53(3):295–304Google Scholar
  43. 43.
    Goldstein JA, Gallagher MJ, O’Neill WW et al (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49(8):863–871Google Scholar
  44. 44.
    Hoffmann U, Nagurney JT, Moselewski F et al (2006) Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 114(21):2251–2260Google Scholar
  45. 45.
    Rubinshtein R, Halon DA, Gaspar T et al (2007) Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 115(13):1762–1768Google Scholar
  46. 46.
    Hoffmann U, Bamberg F, Chae CU et al (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) Trial. J Am Coll Cardiol 53(18):1642–1650Google Scholar
  47. 47.
    Chang SA, Choi SI, Choi EK et al (2008) Usefulness of 64-slice multidetector computed tomography as an initial diagnostic approach in patients with acute chest pain. Am Heart J 156(2):375–383Google Scholar
  48. 48.
    Goldstein JA, Chinnaiyan KM, Abidov A et al (2011) The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol 58(14):1414–1422Google Scholar
  49. 49.
    Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of the apical ballooning syndrome using contrast enhanced magnetic resonance imaging. Eur Heart J 29:2651–2659Google Scholar
  50. 50.
    Eitel I, Knobelsdorff-Brenkenhoff F von, Bernhardt P et al (2011) Clinical characteristics and cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy: a multicenter series in Europe and North America. JAMA 306:277–286Google Scholar
  51. 51.
    Assomull RG, Lyne JC, Keenan N et al (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur Heart J 28(10):1242–1249Google Scholar
  52. 52.
    Baccouche H, Mahrholdt H, Meinhardt G et al (2009) Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J 30(23):2869–2879Google Scholar
  53. 53.
    Laissy JP, Hyafil F, Feldman LJ et al (2005) Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology 237(1):75–82Google Scholar
  54. 54.
    Mewton N, Bonnefoy E, Revel D et al (2009) Presence and extent of cardiac magnetic resonance microvascular obstruction in reperfused non-ST-elevated myocardial infarction and correlation with infarct size and myocardial enzyme release. Cardiology 113(1):50–58Google Scholar
  55. 55.
    Raman SV, Simonetti OP, Winner Iii MW et al (2010) Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 55(22):2480–2488Google Scholar
  56. 56.
    Beek AM, Kuhl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42(5):895–901Google Scholar
  57. 57.
    Bruder O, Breuckmann F, Jensen C et al (2008) Prognostic impact of contrast-enhanced CMR early after acute ST segment elevation myocardial infarction (STEMI) in a regional STEMI network: results of the „Herzinfarktverbund Essen“. Herz 33(2):136–142Google Scholar
  58. 58.
    Gerber BL, Garot J, Bluemke DA et al (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106(9):1083–1089Google Scholar
  59. 59.
    Hombach V, Grebe O, Merkle N et al (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26(6):549–557Google Scholar
  60. 60.
    Nijveldt R, Beek AM, Hofman MB et al (2007) Late gadolinium-enhanced cardiovascular magnetic resonance evaluation of infarct size and microvascular obstruction in optimally treated patients after acute myocardial infarction. J Cardiovasc Magn Reson 9(5):765–770Google Scholar
  61. 61.
    Shapiro MD, Nieman K, Nasir K et al (2007) Utility of cardiovascular magnetic resonance to predict left ventricular recovery after primary percutaneous coronary intervention for patients presenting with acute ST-segment elevation myocardial infarction. Am J Cardiol 100(2):211–216Google Scholar
  62. 62.
    Wu E, Ortiz JT, Tejedor P et al (2008) Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94(6):730–736Google Scholar
  63. 63.
    Wu KC, Zerhouni EA, Judd RM et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97(8):765–772Google Scholar
  64. 64.
    Waha S de, Desch S, Eitel I et al (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 31:2660–2668Google Scholar
  65. 65.
    Eitel I, Desch S, Fuernau G et al (2010) Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol 55(22):2470–2479Google Scholar
  66. 66.
    Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29(21):2651–2659Google Scholar
  67. 67.
    Nienaber CA, Kische S, Skriabina V, Ince H (2009) Noninvasive imaging approaches to evaluate the patient with known or suspected aortic disease. Circ Cardiovasc Imaging 2(6):499–506Google Scholar
  68. 68.
    Shiga T, Wajima Z, Apfel CC et al (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166(13):1350–1356Google Scholar
  69. 69.
    Erbel R, Alfonso F, Boileau C et al (2001) Diagnosis and management of aortic dissection. Eur Heart J 22(18):1642–1681Google Scholar
  70. 70.
    Mammen L, Yucel E, Khan A et al (2008) ACR Appropriateness Criteria® acute chest pain – suspected aortic dissection. American College of Radiology (ACR), Reston (VA), 1–6 (online publication)Google Scholar
  71. 71.
    Haage P, Piroth W, Krombach G et al (2003) Pulmonary embolism: comparison of angiography with spiral computed tomography, magnetic resonance angiography, and real-time magnetic resonance imaging. Am J Respir Crit Care Med 167(5):729–734Google Scholar
  72. 72.
    Kluge A, Luboldt W, Bachmann G (2006) Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol 187(1):W7–W14Google Scholar
  73. 73.
    Remy-Jardin M, Pistolesi M et al (2007) Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 245(2):315–329Google Scholar
  74. 74.
    Stein PD, Woodard PK, Weg JG et al (2006) Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II Investigators. Am J Med 119(12):1048–1055Google Scholar
  75. 75.
    Jahnke C, Nagel E, Gebker R et al (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115(13):1769–1776Google Scholar
  76. 76.
    Wallace EL, Morgan TM, Walsh TF et al (2009) Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease. JACC Cardiovasc Imaging 2(3):299–307Google Scholar
  77. 77.
    Bodi V, Sanchis J, Lopez-Lereu MP et al (2007) Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol 50(12):1174–1179Google Scholar
  78. 78.
    Bodi V, Sanchis J, Lopez-Lereu MP et al (2009) Prognostic and therapeutic implications of dipyridamole stress cardiovascular magnetic resonance on the basis of the ischaemic cascade. Heart 95(1):49–55Google Scholar
  79. 79.
    Giang TH, Nanz D, Coulden R et al (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25(18):1657–1665Google Scholar
  80. 80.
    Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224Google Scholar
  81. 81.
    Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120(22):2207–2213Google Scholar
  82. 82.
    Wolff SD, Schwitter J, Coulden R et al (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110(6):732–737Google Scholar
  83. 83.
    Kaandorp TA, Bax JJ, Schuijf JD et al (2004) Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 93(12):1461–1464Google Scholar
  84. 84.
    Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109(18):2172–2174Google Scholar
  85. 85.
    Baer FM, Voth E, Deutsch HJ et al (1996) Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 28(1):60–69Google Scholar
  86. 86.
    Baer FM, Voth E, Schneider CA et al (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F] fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91(4):1006–1015Google Scholar
  87. 87.
    Gutberlet M, Frohlich M, Mehl S et al (2005) Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur Radiol 15(5):872–880Google Scholar
  88. 88.
    Hunold P, Kreitner KF, Barkhausen J (2007) „Dead or alive?“: how and why myocardial viability imaging by cardiac MRI works. Rofo 179(10):1016–1024Google Scholar
  89. 89.
    Sandstede JJ, Bertsch G, Beer M et al (1999) Detection of myocardial viability by low-dose dobutamine cine MR imaging. Magn Reson Imaging 17(10):1437–1443Google Scholar
  90. 90.
    Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453Google Scholar
  91. 91.
    Klein C, Nagel E, Gebker R et al (2009) Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery. JACC Cardiovasc Imaging 2(4):437–445Google Scholar
  92. 92.
    Kuhl HP, Beek AM, Weerdt AP van der et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41(8):1341–1348Google Scholar
  93. 93.
    Soon KH, Cox N, Wong A et al (2007) CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion. J Interv Cardiol 20(5):359–366Google Scholar
  94. 94.
    Mollet NR, Hoye A, Lemos PA et al (2005) Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 95(2):240–243Google Scholar
  95. 95.
    Gasparovic H, Rybicki FJ, Millstine J et al (2005) Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J Cardiothorac Surg 28(2):244–249Google Scholar
  96. 96.
    Aviram G, Sharony R, Kramer A et al (2005) Modification of surgical planning based on cardiac multidetector computed tomography in reoperative heart surgery. Ann Thorac Surg 79(2):589–595Google Scholar
  97. 97.
    Kamdar AR, Meadows TA, Roselli EE et al (2008) Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg 85(4):1239–1245Google Scholar
  98. 98.
    Cho JR, Kim YJ, Ahn CM et al (2010) Quantification of regional calcium burden in chronic total occlusion by 64-slice multi-detector computed tomography and procedural outcomes of percutaneous coronary intervention. Int J Cardiol 145(1):9–14Google Scholar
  99. 99.
    Al-Saadi N, Nagel E, Gross M et al (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36(5):1557–1564Google Scholar
  100. 100.
    Fenchel M, Franow A, Stauder NI et al (2005) Myocardial perfusion after angioplasty in patients suspected of having single-vessel coronary artery disease: improvement detected at rest-stress first-pass perfusion MR imaging – initial experience. Radiology 237(1):67–74Google Scholar
  101. 101.
    Hundley WG, Morgan TM, Neagle CM et al (2002) Magnetic resonance imaging determination of cardiac prognosis. Circulation 106(18):2328–2333Google Scholar
  102. 102.
    Duerinckx AJ, Atkinson D, Hurwitz R (1998) Assessment of coronary artery patency after stent placement using magnetic resonance angiography. J Magn Reson Imaging 8(4):896–902Google Scholar
  103. 103.
    Hug J, Nagel E, Bornstedt A et al (2000) Coronary arterial stents: safety and artifacts during MR imaging. Radiology 216(3):781–787Google Scholar
  104. 104.
    Maintz D, Botnar RM, Fischbach R et al (2002) Coronary magnetic resonance angiography for assessment of the stent lumen: a phantom study. J Cardiovasc Magn Reson 4(3):359–367Google Scholar
  105. 105.
    Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47(8):1630–1638Google Scholar
  106. 106.
    Nagel E, Thouet T, Klein C et al (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 107(13):1738–1743Google Scholar
  107. 107.
    Saito Y, Sakuma H, Shibata M et al (2001) Assessment of coronary flow velocity reserve using fast velocity-encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Magn Reson 3(3):209–214Google Scholar
  108. 108.
    Bernhardt P, Spiess J, Levenson B et al (2009) Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol. JACC Cardiovasc Imaging 2(11):1292–1300Google Scholar
  109. 109.
    Cury RC, Cattani CA, Gabure LA et al (2006) Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 240(1):39–45Google Scholar
  110. 110.
    Doesch C, Seeger A, Hoevelborn T et al (2008) Adenosine stress cardiac magnetic resonance imaging for the assessment of ischemic heart disease. Clin Res Cardiol 97(12):905–912Google Scholar
  111. 111.
    Pilz G, Bernhardt P, Klos M et al (2006) Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper prior to invasive examination in patients with AHA/ACC class II indication for coronary angiography. Clin Res Cardiol 95(10):531–538Google Scholar
  112. 112.
    Steel K, Broderick R, Gandla V et al (2009) Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation 120(14):1390–1400Google Scholar
  113. 113.
    Heilmaier C, Bruder O, Meier F et al (2009) Dobutamine stress cardiovascular magnetic resonance imaging in patients after invasive coronary revascularization with stent placement. Acta Radiol 50(10):1134–1141Google Scholar
  114. 114.
    Hundley WG, Hamilton CA, Thomas MS et al (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100(16):1697–702Google Scholar
  115. 115.
    Korosoglou G, Lossnitzer D, Schellberg D et al (2009) Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis. Circ Cardiovasc Imaging 2(2):132–140Google Scholar
  116. 116.
    Kuijpers D, Ho KY, Dijkman PR van et al (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107(12):1592–1597Google Scholar
  117. 117.
    Paetsch I, Jahnke C, Ferrari VA et al (2006) Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. Eur Heart J 27(12):1459–1464Google Scholar
  118. 118.
    Wahl A, Paetsch I, Roethemeyer S et al (2004) High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 233(1):210–216Google Scholar
  119. 119.
    Dikkers R, Willems TP, Jonge GJ de et al (2009) Accuracy of noninvasive coronary stenosis quantification of different commercially available dedicated software packages. J Comput Assist Tomogr 33(4):505–512Google Scholar
  120. 120.
    Langerak SE, Vliegen HW, Roos A de et al (2002) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105(3):328–333Google Scholar
  121. 121.
    Langerak SE, Vliegen HW, Jukema JW et al (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107(11):1502–1508Google Scholar
  122. 122.
    Langerak SE, Vliegen HW, Jukema JW et al (2003) Vein graft function improvement after percutaneous intervention: evaluation with MR flow mapping. Radiology 228(3):834–841Google Scholar
  123. 123.
    Salm LP, Bax JJ, Vliegen HW et al (2004) Functional significance of stenoses in coronary artery bypass grafts. Evaluation by single-photon emission computed tomography perfusion imaging, cardiovascular magnetic resonance, and angiography. J Am Coll Cardiol 44(9):1877–1882Google Scholar
  124. 124.
    Salm LP, Langerak SE, Vliegen HW et al (2004) Blood flow in coronary artery bypass vein grafts: volume versus velocity at cardiovascular MR imaging. Radiology 232(3):915–920Google Scholar
  125. 125.
    Salm LP, Vliegen HW, Langerak SE et al (2005) Evaluation of saphenous vein coronary artery bypass graft flow by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 7(4):631–637Google Scholar
  126. 126.
    Stauder NI, Klumpp B, Stauder H et al (2007) Assessment of coronary artery bypass grafts by magnetic resonance imaging. Br J Radiol 80(960):975–983Google Scholar
  127. 127.
    Meyer TS, Martinoff S, Hadamitzky M et al (2007) Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol 49(9):946–950Google Scholar
  128. 128.
    Onuma Y, Tanabe K, Chihara R et al (2007) Evaluation of coronary artery bypass grafts and native coronary arteries using 64-slice multidetector computed tomography. Am Heart J 154(3):519–526Google Scholar
  129. 129.
    Weustink AC, Nieman K, Pugliese F et al (2009) Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging 2(7):816–824Google Scholar
  130. 130.
    Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341; quizGoogle Scholar
  131. 131.
    Nazeri I, Shahabi P, Tehrai M et al (2009) Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol 103(5):667–673Google Scholar
  132. 132.
    Angelini P, Velasco JA, Flamm S (2002) Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation 105(20):2449–2454Google Scholar
  133. 133.
    Vliegen HW, Doornbos J, Roos A de et al (1997) Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol 79(6):773–776Google Scholar
  134. 134.
    Post JC, Rossum AC van, Bronzwaer JG et al (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92(11):3163–3171Google Scholar
  135. 135.
    Taylor AM, Thorne SA, Rubens MB et al (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation 101(14):1670–1678Google Scholar
  136. 136.
    Kacmaz F, Ozbulbul NI, Alyan O et al (2008) Imaging of coronary artery anomalies: the role of multidetector computed tomography. Coron Artery Dis 19(3):203–209Google Scholar
  137. 137.
    Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH (2004) Multislice CT imaging of anomalous coronary arteries. Eur Radiol 14(12):2172–2181Google Scholar
  138. 138.
    Duran C, Kantarci M, Durur Subasi I et al (2006) Remarkable anatomic anomalies of coronary arteries and their clinical importance: a multidetector computed tomography angiographic study. J Comput Assist Tomogr 30(6):939–948Google Scholar
  139. 139.
    Schmid M, Achenbach S, Ludwig J et al (2006) Visualization of coronary artery anomalies by contrast-enhanced multi-detector row spiral computed tomography. Int J Cardiol 111(3):430–435Google Scholar
  140. 140.
    Kim SY, Seo JB, Do KH et al (2006) Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics 26(2):317–333; discussion 33–34Google Scholar
  141. 141.
    Hachulla AL, Launay D, Gaxotte V et al (2009) Cardiac magnetic resonance imaging in systemic sclerosis: a cross-sectional observational study of 52 patients. Ann Rheum Dis 68(12):1878–1884Google Scholar
  142. 142.
    Ichinose A, Otani H, Oikawa M et al (2008) MRI of cardiac sarcoidosis: basal and subepicardial localization of myocardial lesions and their effect on left ventricular function. AJR Am J Roentgenol 191(3):862–869Google Scholar
  143. 143.
    Maceira AM, Prasad SK, Hawkins PN et al (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 10:54Google Scholar
  144. 144.
    Mavrogeni S, Manoussakis MN, Karagiorga TC et al (2009) Detection of coronary artery lesions and myocardial necrosis by magnetic resonance in systemic necrotizing vasculitides. Arthritis Rheum 61(8):1121–1129Google Scholar
  145. 145.
    Patel MR, Cawley PJ, Heitner JF et al (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120(20):1969–1977Google Scholar
  146. 146.
    Pepe A, Positano V, Santarelli MF et al (2006) Multislice multiecho T2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging 23(5):662–668Google Scholar
  147. 147.
    Vogelsberg H, Mahrholdt H, Deluigi CC et al (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 51(10):1022–1030Google Scholar
  148. 148.
    Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 4(4):362–367Google Scholar
  149. 149.
    Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4(3):327–339Google Scholar
  150. 150.
    Codreanu A, Djaballah W, Angioi M et al (2007) Detection of myocarditis by contrast-enhanced MRI in patients presenting with acute coronary syndrome but no coronary stenosis. J Magn Reson Imaging 25(5):957–964Google Scholar
  151. 151.
    O’Hanlon R, Pennell DJ (2009) Cardiovascular magnetic resonance in the evaluation of hypertrophic and infiltrative cardiomyopathies. Heart Fail Clin 5(3):369–387, viGoogle Scholar
  152. 152.
    Shehata ML, Turkbey EB, Vogel-Claussen J, Bluemke DA (2008) Role of cardiac magnetic resonance imaging in assessment of nonischemic cardiomyopathies. Top Magn Reson Imaging 19(1):43–57Google Scholar
  153. 153.
    Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421Google Scholar
  154. 154.
    Henneman MM, Schuijf JD, Jukema JW et al (2006) Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 13(4):480–487Google Scholar
  155. 155.
    Yamamuro M, Tadamura E, Kubo S et al (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234(2):381–390Google Scholar
  156. 156.
    Grude M, Juergens KU, Wichter T et al (2003) Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 38(10):653–661Google Scholar
  157. 157.
    Raman SV, Cook SC, McCarthy B, Ferketich AK (2005) Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol 95(5):683–686Google Scholar
  158. 158.
    Raman SV, Shah M, McCarthy B et al (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151(3):736–744Google Scholar
  159. 159.
    Hansen MW, Merchant N (2007) MRI of hypertrophic cardiomyopathy: part 2, differential diagnosis, risk stratification, and posttreatment MRI appearances. AJR Am J Roentgenol 189(6):1344–1352Google Scholar
  160. 160.
    Nazarian S, Lima JA (2008) Cardiovascular magnetic resonance for risk stratification of arrhythmia in hypertrophic cardiomyopathy. J Am Coll Cardiol 51(14):1375–1376Google Scholar
  161. 161.
    Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985Google Scholar
  162. 162.
    Koikkalainen JR, Antila M, Lotjonen JM et al (2008) Early familial dilated cardiomyopathy: identification with determination of disease state parameter from cine MR image data. Radiology 249(1):88–96Google Scholar
  163. 163.
    Shimizu I, Iguchi N, Watanabe H et al (2010) Delayed enhancement cardiovascular magnetic resonance as a novel technique to predict cardiac events in dilated cardiomyopathy patients. Int J Cardiol 142(3):224–229Google Scholar
  164. 164.
    Giorgi B, Mollet NR, Dymarkowski S et al (2003) Clinically suspected constrictive pericarditis: MR imaging assessment of ventricular septal motion and configuration in patients and healthy subjects. Radiology 228(2):417–424Google Scholar
  165. 165.
    Hancock EW (2001) Differential diagnosis of restrictive cardiomyopathy and constrictive pericarditis. Heart 86(3):343–349Google Scholar
  166. 166.
    Miller S, Riessen R (2005) MR imaging in cardiomyopathies. Rofo 177(11):1497–1505Google Scholar
  167. 167.
    Moreo A, Ambrosio G, De Chiara B et al (2009) Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2(6):437–443Google Scholar
  168. 168.
    Biagini E, Ragni L, Ferlito M et al (2006) Different types of cardiomyopathy associated with isolated ventricular noncompaction. Am J Cardiol 98(6):821–824Google Scholar
  169. 169.
    Patlas M, Strohm O, Filipchuk N, Friedrich MG (2008) Cardiac magnetic resonance imaging of noncompaction cardiomyopathy. Can J Cardiol 24(10):798Google Scholar
  170. 170.
    Sen-Chowdhry S, Prasad SK, Syrris P et al (2006) Cardiovascular magnetic resonance in arrhythmogenic right ventricular cardiomyopathy revisited: comparison with task force criteria and genotype. J Am Coll Cardiol 48(10):2132–2140Google Scholar
  171. 171.
    White RD, Trohman RG, Flamm SD et al (1998) Right ventricular arrhythmia in the absence of arrhythmogenic dysplasia: MR imaging of myocardial abnormalities. Radiology 207(3):743–751Google Scholar
  172. 172.
    Crean A, Greenwood JP, Plein S (2009) Contribution of noninvasive imaging to the diagnosis and follow-up of Takotsubo cardiomyopathy. JACC Cardiovasc Imaging 2(4):519–521Google Scholar
  173. 173.
    Yilmaz A, Kindermann I, Kindermann M et al (2010) Comparative evaluation of left and right ventricular endomyocardial biopsy: differences in complication rate and diagnostic performance. Circulation 122(9):900–909Google Scholar
  174. 174.
    Gutberlet M, Spors B, Thoma T et al (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246(2):401–409Google Scholar
  175. 175.
    Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109(10):1250–1258Google Scholar
  176. 176.
    Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114(15):1581–1590Google Scholar
  177. 177.
    Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487Google Scholar
  178. 178.
    Lin CH, Chang WN, Chua S et al (2009) Idiopathic hypereosinophilia syndrome with loeffler endocarditis, embolic cerebral infarction, and left hydranencephaly: a case report. Acta Neurol Taiwan 18(3):207–212Google Scholar
  179. 179.
    Germans T, Rossum AC van (2008) The use of cardiac magnetic resonance imaging to determine the aetiology of left ventricular disease and cardiomyopathy. Heart 94(4):510–518Google Scholar
  180. 180.
    Harris SR, Glockner J, Misselt AJ et al (2008) Cardiac MR imaging of nonischemic cardiomyopathies. Magn Reson Imaging Clin North Am 16(2):165–183, viiGoogle Scholar
  181. 181.
    Duckett SG, Chiribiri A, Ginks MR et al (2011) MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. J Magn Reson Imaging 33(1):87–95Google Scholar
  182. 182.
    Chiribiri A, Kelle S, Köhler U et al (2008) Magnetic resonance cardiac vein imaging: relation to mitral valve annulus and left circumflex coronary artery. JACC Cardiovasc Imaging 1(6):729–738Google Scholar
  183. 183.
    Jongbloed MR, Lamb HJ, Bax JJ et al (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45(5):749–753Google Scholar
  184. 184.
    Kim YH, Marom EM, Herndon JE II, McAdams HP (2005) Pulmonary vein diameter, cross-sectional area, and shape: CT analysis. Radiology 235(1):43–49; discussion 9–50Google Scholar
  185. 185.
    Van de Veire NR, Marsan NA, Schuijf JD et al (2008) Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol 101(7):1023–1029Google Scholar
  186. 186.
    Choure AJ, Garcia MJ, Hesse B et al (2006) In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol 48(10):1938–1945Google Scholar
  187. 187.
    Tops LF, Van de Veire NR, Schuijf JD et al (2007) Noninvasive evaluation of coronary sinus anatomy and its relation to the mitral valve annulus: implications for percutaneous mitral annuloplasty. Circulation 115(11):1426–1432Google Scholar
  188. 188.
    Bleeker GB, Kaandorp TA, Lamb HJ et al (2006) Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113(7):969–976Google Scholar
  189. 189.
    Delgado V, Bommel RJ van, Bertini M et al (2011) Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123(1):70–78Google Scholar
  190. 190.
    Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 30(19):2360–2367Google Scholar
  191. 191.
    White JA, Yee R, Yuan X et al (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48(10):1953–1960Google Scholar
  192. 192.
    Ypenburg C, Schalij MJ, Bleeker GB et al (2007) Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J 28(1):33–41Google Scholar
  193. 193.
    England B, Lee A, Tran T et al (2005) Magnetic resonance criteria for future trials of cardiac resynchronization therapy. J Cardiovasc Magn Reson 7(5):827–834Google Scholar
  194. 194.
    Muellerleile K, Stork A, Bansmann M et al (2008) Detection of mechanical ventricular asynchrony by high temporal resolution cine MRI. Eur Radiol 18(7):1329–1337Google Scholar
  195. 195.
    Zwanenburg JJ, Gotte MJ, Kuijer JP et al (2004) Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset and late peak of shortening in lateral wall. Am J Physiol Heart Circ Physiol 286(5):H1872–H1880Google Scholar
  196. 196.
    Truong QA, Singh JP, Cannon CP et al (2008) Quantitative analysis of intraventricular dyssynchrony using wall thickness by multidetector computed tomography. JACC Cardiovasc Imaging 1(6):772–7781Google Scholar
  197. 197.
    Choi EY, Choi BW, Kim SA et al (2009) Patterns of late gadolinium enhancement are associated with ventricular stiffness in patients with advanced non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 11(6):573–580Google Scholar
  198. 198.
    Maron MS, Appelbaum E, Harrigan CJ et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail 1(3):184–191Google Scholar
  199. 199.
    Jain A, Tandri H, Calkins H, Bluemke DA (2008) Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson 10:32Google Scholar
  200. 200.
    Tandri H, Saranathan M, Rodriguez ER et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45(1):98–103Google Scholar
  201. 201.
    Chyou JY, Biviano A, Magno P et al (2009) Applications of computed tomography and magnetic resonance imaging in percutaneous ablation therapy for atrial fibrillation. J Interv Card Electrophysiol 26(1):47–57Google Scholar
  202. 202.
    Hamdan A, Charalampos K, Roettgen R et al (2009) Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol 104(11):1540–1546Google Scholar
  203. 203.
    Mansour M, Holmvang G, Sosnovik D et al (2004) Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J Cardiovasc Electrophysiol 15(4):387–393Google Scholar
  204. 204.
    Jongbloed MR, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation – initial experience. Radiology 234(3):702–709Google Scholar
  205. 205.
    Martinek M, Nesser HJ, Aichinger J et al (2006) Accuracy of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping for real-time guided radiofrequency ablation of left atrial fibrillation-influence of heart rhythm and radiofrequency lesions. J Interv Card Electrophysiol 17(2):85–92Google Scholar
  206. 206.
    Martinek M, Nesser HJ, Aichinger J et al (2007) Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing Clin Electrophysiol 30(10):1215–1223Google Scholar
  207. 207.
    Jongbloed MR, Bax JJ, Lamb HJ et al (2005) Multislice computed tomography versus intracardiac echocardiography to evaluate the pulmonary veins before radiofrequency catheter ablation of atrial fibrillation: a head-to-head comparison. J Am Coll Cardiol 45(3):343–350Google Scholar
  208. 208.
    Kistler PM, Rajappan K, Jahngir M et al (2006) The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17(10):1093–1101Google Scholar
  209. 209.
    Dill T, Neumann T, Ekinci O et al (2003) Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 107(6):845–850Google Scholar
  210. 210.
    Kluge A, Dill T, Ekinci O et al (2004) Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 126(2):428–437Google Scholar
  211. 211.
    Neumann T, Kuniss M, Conradi G et al (2009) Pulmonary vein stenting for the treatment of acquired severe pulmonary vein stenosis after pulmonary vein isolation: clinical implications after long-term follow-up of 4 years. J Cardiovasc Electrophysiol 20(3):251–257Google Scholar
  212. 212.
    Packer DL, Keelan P, Munger TM et al (2005) Clinical presentation, investigation, and management of pulmonary vein stenosis complicating ablation for atrial fibrillation. Circulation 111(5):546–554Google Scholar
  213. 213.
    Peters DC, Wylie JV, Hauser TH et al (2009) Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging 2(3):308–316Google Scholar
  214. 214.
    Barrett CD, Di Biase L, Natale A (2009) How to identify and treat patient with pulmonary vein stenosis post atrial fibrillation ablation. Curr Opin Cardiol 24(1):42–49Google Scholar
  215. 215.
    Burgstahler C, Trabold T, Kuettner A et al (2005) Visualization of pulmonary vein stenosis after radio frequency ablation using multi-slice computed tomography: initial clinical experience in 33 patients. Int J Cardiol 102(2):287–291Google Scholar
  216. 216.
    Malyar NM, Schlosser T, Barkhausen J et al (2008) Assessment of aortic valve area in aortic stenosis using cardiac magnetic resonance tomography: comparison with echocardiography. Cardiology 109(2):126–134Google Scholar
  217. 217.
    O’Brien KR, Gabriel RS, Greiser A et al (2009) Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time. J Cardiovasc Magn Reson 11:49Google Scholar
  218. 218.
    Alkadhi H, Wildermuth S, Plass A et al (2006) Aortic stenosis: comparative evaluation of 16-detector row CT and echocardiography. Radiology 240(1):47–55Google Scholar
  219. 219.
    Halpern EJ, Mallya R, Sewell M et al (2009) Differences in aortic valve area measured with CT planimetry and echocardiography (continuity equation) are related to divergent estimates of left ventricular outflow tract area. AJR Am J Roentgenol 192(6):1668–1673Google Scholar
  220. 220.
    LaBounty TM, Sundaram B, Agarwal P et al (2008) Aortic valve area on 64-MDCT correlates with transesophageal echocardiography in aortic stenosis. AJR Am J Roentgenol 191(6):1652–1658Google Scholar
  221. 221.
    Pouleur AC, le Polain de Waroux JB, Pasquet A et al (2007) Aortic valve area assessment: multidetector CT compared with cine MR imaging and transthoracic and transesophageal echocardiography. Radiology 244(3):745–754Google Scholar
  222. 222.
    Gelfand EV, Hughes S, Hauser TH et al (2006) Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson 8(3):503–507Google Scholar
  223. 223.
    Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 14(2):106–112Google Scholar
  224. 224.
    Pouleur AC, le Polain de Waroux JB, Pasquet A et al (2007) Planimetric and continuity equation assessment of aortic valve area: head to head comparison between cardiac magnetic resonance and echocardiography. J Magn Reson Imaging 26(6):1436–1443Google Scholar
  225. 225.
    Tanaka K, Makaryus AN, Wolff SD (2007) Correlation of aortic valve area obtained by the velocity-encoded phase contrast continuity method to direct planimetry using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9(5):799–805Google Scholar
  226. 226.
    Lin SJ, Brown PA, Watkins MP et al (2004) Quantification of stenotic mitral valve area with magnetic resonance imaging and comparison with Doppler ultrasound. J Am Coll Cardiol 44(1):133–137Google Scholar
  227. 227.
    Kon MW, Myerson SG, Moat NE, Pennell DJ (2004) Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis 13(4):600–607Google Scholar
  228. 228.
    Kilner PJ, Sievers B, Meyer GP, Ho SY (2002) Double-chambered right ventricle or sub-infundibular stenosis assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 4(3):373–379Google Scholar
  229. 229.
    Kivelitz DE, Dohmen PM, Lembcke A et al (2003) Visualization of the pulmonary valve using cine MR imaging. Acta Radiol 44(2):172–176Google Scholar
  230. 230.
    Rebergen SA, Chin JG, Ottenkamp J et al (1993) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88(5 Pt 1):2257–2266Google Scholar
  231. 231.
    Therrien J, Provost Y, Merchant N et al (2005) Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 95(6):779–782Google Scholar
  232. 232.
    Stollberger C, Kopsa W, Finsterer J (2006) Non-compaction of the right atrium and left ventricle in Ebstein’s malformation. J Heart Valve Dis 15(5):719–720Google Scholar
  233. 233.
    Reynier C, Garcier J, Legault B et al (2001) Cross-sectional imaging of post endocarditis paravalvular myocardial abscesses of native mitral valves: 4 cases. J Radiol. 2001 82(6 Pt 1):665–669Google Scholar
  234. 234.
    LaBounty TM, Agarwal PP, Chughtai A et al (2009) Hemodynamic and functional assessment of mechanical aortic valves using combined echocardiography and multidetector computed tomography. J Cardiovasc Comput Tomogr 3(3):161–167Google Scholar
  235. 235.
    Schultz CJ, Weustink A, Piazza N et al (2009) Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis. J Am Coll Cardiol 54(10):911–918Google Scholar
  236. 236.
    Harris KM, Ang E, Lesser JR, Sonnesyn SW (2007) Cardiac magnetic resonance imaging for detection of an abscess associated with prosthetic valve endocarditis: a case report. Heart Surg Forum 10(3):E186–E187Google Scholar
  237. 237.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48(8):1658–1665Google Scholar
  238. 238.
    Tops LF, Delgado V, Kley F van der, Bax JJ (2009) Percutaneous aortic valve therapy: clinical experience and the role of multi-modality imaging. Heart 95(18):1538–1546Google Scholar
  239. 239.
    Wood DA, Tops LF, Mayo JR et al (2009) Role of multislice computed tomography in transcatheter aortic valve replacement. Am J Cardiol 103(9):1295–1301Google Scholar
  240. 240.
    Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging1(3):321–330Google Scholar
  241. 241.
    Kahlert P, Plicht B, Janosi RA et al (2009) The role of imaging in percutaneous mitral valve repair. Herz 34(6):458–467Google Scholar
  242. 242.
    Delgado V, Tops LF, Schuijf JD et al (2009) Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging 2(5):556–565Google Scholar
  243. 243.
    Rienmuller R, Groll R, Lipton MJ (2004) CT and MR imaging of pericardial disease. Radiol Clin North Am 42(3):587–601, viGoogle Scholar
  244. 244.
    Wang ZJ, Reddy GP, Gotway MB et al (2003) CT and MR imaging of pericardial disease. Radiographics Spec No:S167–S80Google Scholar
  245. 245.
    Rifkin RD, Mernoff DB (2005) Noninvasive evaluation of pericardial effusion composition by computed tomography. Am Heart J 149(6):1120–1127Google Scholar
  246. 246.
    Francone M, Dymarkowski S, Kalantzi M, Bogaert J (2005) Magnetic resonance imaging in the evaluation of the pericardium. A pictorial essay. Radiol Med 109(1–2):64–74; quiz 5–6Google Scholar
  247. 247.
    Misselt AJ, Harris SR, Glockner J et al (2008) MR imaging of the pericardium. Magn Reson Imaging Clin North Am 16(2):185–199, viiGoogle Scholar
  248. 248.
    Smith WH, Beacock DJ, Goddard AJ et al (2001) Magnetic resonance evaluation of the pericardium. Br J Radiol 74(880):384–392Google Scholar
  249. 249.
    Troughton RW, Asher CR, Klein AL (2004) Pericarditis. Lancet 363(9410):717–727Google Scholar
  250. 250.
    Bauner K, Horng A, Schmitz C et al (2010) New observations from MR velocity-encoded flow measurements concerning diastolic function in constrictive pericarditis. Eur Radiol 20(8):1831–1840Google Scholar
  251. 251.
    Francone M, Dymarkowski S, Kalantzi M et al (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16(4):944–951Google Scholar
  252. 252.
    Myers RB, Spodick DH (1999) Constrictive pericarditis: clinical and pathophysiologic characteristics. Am Heart J 138(2 Pt 1):219–232Google Scholar
  253. 253.
    Nishimura RA (2001) Constrictive pericarditis in the modern era: a diagnostic dilemma. Heart 86(6):619–623Google Scholar
  254. 254.
    Suh SY, Rha SW, Kim JW et al (2006) The usefulness of three-dimensional multidetector computed tomography to delineate pericardial calcification in constrictive pericarditis. Int J Cardiol 113(3):414–416Google Scholar
  255. 255.
    Hoffmann MH, Shi H, Lieberknecht M et al (2003) Images in cardiovascular medicine. Sixteen-slice computed tomography and magnetic resonance imaging of calcified pericardium. Circulation 108(7):e48–e49Google Scholar
  256. 256.
    Khan NU, Yonan N (2009) Does preoperative computed tomography reduce the risks associated with re-do cardiac surgery? Interact Cardiovasc Thorac Surg 9(1):119–123Google Scholar
  257. 257.
    Schwefer M, Aschenbach R, Heidemann J et al (2009) Constrictive pericarditis, still a diagnostic challenge: comprehensive review of clinical management. Eur J Cardiothorac Surg 36(3):502–510Google Scholar
  258. 258.
    Chiles C, Woodard PK, Gutierrez FR, Link KM (2001) Metastatic involvement of the heart and pericardium: CT and MR imaging. Radiographics 21(2):439–449Google Scholar
  259. 259.
    Grebenc ML, Rosado de Christenson ML, Burke AP et al (2000) Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. Radiographics 20(4):1073–1103Google Scholar
  260. 260.
    Syed IS, Feng D, Harris SR et al (2008) MR imaging of cardiac masses. Magn Reson Imaging Clin North Am 16(2):137–164, viiGoogle Scholar
  261. 261.
    Kim JS, Kim HH, Yoon Y (2007) Imaging of pericardial diseases. Clin Radiol 62(7):626–631Google Scholar
  262. 262.
    Ling LH, Oh JK, Schaff HV et al (1999) Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation 100(13):1380–1386Google Scholar
  263. 263.
    Sengupta PP, Eleid MF, Khandheria BK (2008) Constrictive pericarditis. Circ J 72(10):1555–1562Google Scholar
  264. 264.
    Spottiswoode B, Russell JB, Moosa S e al (2008) Abnormal diastolic and systolic septal motion following pericardiectomy demonstrated by cine DENSE MRI. Cardiovasc J Afr 19(4):208–209Google Scholar
  265. 265.
    Agelopoulou P, Kapatais A, Varounis C et al (2007) Hepatocellular carcinoma with invasion into the right atrium. Report of two cases and review of the literature. Hepatogastroenterology 54(79):2106–2108Google Scholar
  266. 266.
    Hoffmann U, Globits S, Schima W et al (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 92(7):890–895Google Scholar
  267. 267.
    Juan O, Esteban E, Sotillo J, Alberola V (2008) Atrial flutter and myocardial infarction-like ECG changes as manifestations of left ventricle involvement from lung carcinoma. Clin Transl Oncol 10(2):125–127Google Scholar
  268. 268.
    Schnarkowski P, Wallner B, Gumppenberg R von, Goldmann A (1992) Magnetic resonance tomography and magnetic resonance angiography of an infiltration of the left and right atria by a liver metastasis. Rontgenpraxis 45(3):98–99Google Scholar
  269. 269.
    Vanheste R, Vanhoenacker P, D’Haenens P (2007) Primary cardiac lymphoma. JBR-BTR 90(2):109–111Google Scholar
  270. 270.
    Beek EJ van, Stolpen AH, Khanna G, Thompson BH (2007) CT and MRI of pericardial and cardiac neoplastic disease. Cancer Imaging 7:19–26Google Scholar
  271. 271.
    Kim EY, Choe YH, Sung K et al (2009) Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol 10(2):164–175Google Scholar
  272. 272.
    Krombach GA, Spuentrup E, Buecker A et al (2005) Heart tumors: magnetic resonance imaging and multislice spiral CT. Rofo 177(9):1205–1218Google Scholar
  273. 273.
    Kraemer N, Balzer JC, Schoth F et al (2009) Atrial tumors in cardiac MRI. Rofo 181(11):1038–1049Google Scholar
  274. 274.
    Mohrs OK, Nowak B, Petersen SE et al (2006) Thrombus detection in the left atrial appendage using contrast-enhanced MRI: a pilot study. AJR Am J Roentgenol 186(1):198–205Google Scholar
  275. 275.
    Hur J, Kim YJ, Lee HJ et al (2009) Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology 251(3):683–690Google Scholar
  276. 276.
    Hur J, Kim YJ, Lee HJ et al (2009) Cardiac computed tomographic angiography for detection of cardiac sources of embolism in stroke patients. Stroke 40(6):2073–2078Google Scholar
  277. 277.
    Hur J, Kim YJ, Nam JE et al (2008) Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography – a preliminary report. Radiology 249(1):81–87Google Scholar
  278. 278.
    Martinez MW, Kirsch J, Williamson EE et al (2009) Utility of nongated multidetector computed tomography for detection of left atrial thrombus in patients undergoing catheter ablation of atrial fibrillation. JACC Cardiovasc Imaging 2(1):69–76Google Scholar
  279. 279.
    Feuchtner GM, Dichtl W, Bonatti JO et al (2008) Diagnostic accuracy of cardiac 64-slice computed tomography in detecting atrial thrombi. Comparative study with transesophageal echocardiography and cardiac surgery. Invest Radiol 43(11):794–801Google Scholar
  280. 280.
    Barkhausen J, Hunold P, Eggebrecht H et al (2002) Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol 179(6):1539–1544Google Scholar
  281. 281.
    Bruder O, Waltering KU, Hunold P et al (2005) Detection and characterization of left ventricular thrombi by MRI compared to transthoracic echocardiography. Rofo 177(3):344–349Google Scholar
  282. 282.
    Paydarfar D, Krieger D, Dib N et al (2001) In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology 95(1):40–47Google Scholar
  283. 283.
    Weinsaft JW, Kim HW, Shah DJ et al (2008) Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol 8;52(2):148–157Google Scholar
  284. 284.
    Weinsaft JW, Kim RJ, Ross M et al (2009) Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. JACC Cardiovasc Imaging 2(8):969–979Google Scholar
  285. 285.
    Araoz PA, Eklund HE, Welch TJ, Breen JF (1999) CT and MR imaging of primary cardiac malignancies. Radiographics 19(6):1421–1434Google Scholar
  286. 286.
    Kaminaga T, Takeshita T, Kimura I (2003) Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur Radiol 13(Suppl 4):L1–L10Google Scholar
  287. 287.
    O’Donnell DH, Abbara S, Chaithiraphan V et al (2009) Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances. AJR Am J Roentgenol 193(2):377–387Google Scholar
  288. 288.
    Strotmann J (2008) Cardiac tumors – clinical symptoms, diagnostic approaches, and therapeutic aspects. Med Klin (Munich) 103(3):175–180Google Scholar
  289. 289.
    Henrikson CA, Leng CT, Yuh DD, Brinker JA (2006) Computed tomography to assess possible cardiac lead perforation. Pacing Clin Electrophysiol 29(5):509–511Google Scholar
  290. 290.
    Hirschl DA, Jain VR, Spindola-Franco H et al (2007) Prevalence and characterization of asymptomatic pacemaker and ICD lead perforation on CT. Pacing Clin Electrophysiol 30(1):28–32Google Scholar
  291. 291.
    Burgstahler C, Wohrle J, Kochs M et al (2007) Magnetic resonance imaging to assess acute changes in atrial and ventricular parameters after transcatheter closure of atrial septal defects. J Magn Reson Imaging 25(6):1136–1140Google Scholar
  292. 292.
    Mohrs OK, Petersen SE, Erkapic D et al (2005) Diagnosis of patent foramen ovale using contrast-enhanced dynamic MRI: a pilot study. AJR Am J Roentgenol 184(1):234–240Google Scholar
  293. 293.
    Mohrs OK, Petersen SE, Erkapic D et al (2007) Dynamic contrast-enhanced MRI before and after transcatheter occlusion of patent foramen ovale. AJR Am J Roentgenol 188(3):844–849Google Scholar
  294. 294.
    Nusser T, Hoher M, Merkle N et al (2006) Cardiac magnetic resonance imaging and transesophageal echocardiography in patients with transcatheter closure of patent foramen ovale. J Am Coll Cardiol 48(2):322–329Google Scholar
  295. 295.
    Weber C, Weber M, Ekinci O et al (2008) Atrial septal defects type II: noninvasive evaluation of patients before implantation of an Amplatzer septal occluder and on follow-up by magnetic resonance imaging compared with TEE and invasive measurement. Eur Radiol 18(11):2406–2413Google Scholar
  296. 296.
    Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3(1):65–76Google Scholar
  297. 297.
    Vashist S, Singh GK (2009) Acute myocarditis in children: current concepts and management. Curr Treat Options Cardiovasc Med 11(5):383–391Google Scholar
  298. 298.
    Siegel MJ (2003) Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 229(3):641–650Google Scholar
  299. 299.
    Gilkeson RC, Markowitz AH, Ciancibello L (2003) Multisection CT evaluation of the reoperative cardiac surgery patient. Radiographics Spec No:S3–S17Google Scholar
  300. 300.
    Eichhorn J, Fink C, Delorme S, Ulmer H (2004) Rings, slings and other vascular abnormalities. Ultrafast computed tomography and magnetic resonance angiography in pediatric cardiology. Z Kardiol 93(3):201–208Google Scholar
  301. 301.
    Eichhorn JG, Fink C, Long F et al (2005) Multidetector CT for the diagnosis of congenital vascular anomalies and associated complications in newborns and infants. Rofo 177(10):1366–1372Google Scholar
  302. 302.
    Eichhorn JG, Ley S (2007) Congenital abnormalities of the aorta in children and adolescents. Radiologe 47(11):974–981Google Scholar
  303. 303.
    Eichhorn JG, Long FR, Hill SL et al (2006) Assessment of in-stent stenosis in small children with congenital heart disease using multi-detector computed tomography: a validation study. Catheter Cardiovasc Interv 68(1):11–20Google Scholar
  304. 304.
    Gutberlet M, Abdul-Khaliq H, Grothoff M et al (2003) Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography. Rofo 175(7):942–951Google Scholar
  305. 305.
    Sarikouch S, Koerperich H, Boethig D et al (2011) Reference values for atrial size and function in children and young adults by cardiac MR: a study of the German competence network congenital heart defects. J Magn Reson Imaging 33(5):1028–1039Google Scholar
  306. 306.
    Cohen MS, Anderson RH, Cohen MI et al (2007) Controversies, genetics, diagnostic assessment, and outcomes relating to the heterotaxy syndrome. Cardiol Young 17(Suppl 2):29–43Google Scholar
  307. 307.
    Geva T, Vick GW III, Wendt RE, Rokey R (1994) Role of spin echo and cine magnetic resonance imaging in presurgical planning of heterotaxy syndrome. Comparison with echocardiography and catheterization. Circulation 90(1):348–356Google Scholar
  308. 308.
    Hong YK, Park YW, Ryu SJ et al (2000) Efficacy of MRI in complicated congenital heart disease with visceral heterotaxy syndrome. J Comput Assist Tomogr 24(5):671–682Google Scholar
  309. 309.
    Lee EY, Zurakowski D, Waltz DA et al (2008) MDCT evaluation of the prevalence of tracheomalacia in children with mediastinal aortic vascular anomalies. J Thorac Imaging 23(4):258–265Google Scholar
  310. 310.
    Lee EY, Siegel MJ, Hildebolt CF et al (2004) MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. AJR Am J Roentgenol 182(3):777–784Google Scholar
  311. 311.
    Ou P, Marini D, Celermajer DS et al (2009) Non-invasive assessment of congenital pulmonary vein stenosis in children using cardiac-non-gated CT with 64-slice technology. Eur J Radiol 70(3):595–599Google Scholar
  312. 312.
    Ou P, Celermajer DS, Calcagni G (2007) Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93(8):908–913Google Scholar
  313. 313.
    Oh KH, Choo KS, Lim SJ et al (2009) Multidetector CT evaluation of total anomalous pulmonary venous connections: comparison with echocardiography. Pediatr Radiol 39(9):950–954Google Scholar
  314. 314.
    Gilkeson RC, Ciancibello L, Zahka K (2003) Pictorial essay. Multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR Am J Roentgenol 180(4):973–980Google Scholar
  315. 315.
    Selby JB, Poghosyan T, Wharton M (2006) Asymptomatic partial anomalous pulmonary venous return masquerading as pulmonary vein occlusion following radiofrequency ablation. Int J Cardiovasc Imaging 22(5):719–722Google Scholar
  316. 316.
    Wang XM, Wu LB, Sun C et al (2007) Clinical application of 64-slice spiral CT in the diagnosis of the tetralogy of Fallot. Eur J Radiol 64(2):296–301Google Scholar
  317. 317.
    Beerbaum P, Korperich H, Barth P (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103(20):2476–2482Google Scholar
  318. 318.
    Beerbaum P, Korperich H, Esdorn H et al (2003) Atrial septal defects in pediatric patients: noninvasive sizing with cardiovascular MR imaging. Radiology 228(2):361–369Google Scholar
  319. 319.
    Durongpisitkul K, Tang NL, Soongswang J et al (2004) Predictors of successful transcatheter closure of atrial septal defect by cardiac magnetic resonance imaging. Pediatr Cardiol 25(2):124–30Google Scholar
  320. 320.
    Piaw CS, Kiam OT, Rapaee A et al (2006) Use of non-invasive phase contrast magnetic resonance imaging for estimation of atrial septal defect size and morphology: a comparison with transesophageal echo. Cardiovasc Intervent Radiol 29(2):230–234Google Scholar
  321. 321.
    Thomson LE, Crowley AL, Heitner JF et al (2008) Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging 1(1):31–40Google Scholar
  322. 322.
    Valente AM, Sena L, Powell AJ et al (2007) Cardiac magnetic resonance imaging evaluation of sinus venosus defects: comparison to surgical findings. Pediatr Cardiol 28(1):51–56Google Scholar
  323. 323.
    Rajiah P, Kanne JP (2010) Computed tomography of septal defects. J Cardiovasc Comput Tomogr 4(4):231–245Google Scholar
  324. 324.
    Beerbaum P, Parish V, Bell A (2008) Atypical atrial septal defects in children: noninvasive evaluation by cardiac MRI. Pediatr Radiol 38(11):1188–1194Google Scholar
  325. 325.
    Grosse-Wortmann L, Al-Otay A, Goo HW et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol 49(9):993–1002Google Scholar
  326. 326.
    Riesenkampff EM, Schmitt B, Schnackenburg B et al (2009) Partial anomalous pulmonary venous drainage in young pediatric patients: the role of magnetic resonance imaging. Pediatr Cardiol 30(4):458–464Google Scholar
  327. 327.
    Bass JE, Redwine MD, Kramer LA et al (2000) Spectrum of congenital anomalies of the inferior vena cava: cross-sectional imaging findings. Radiographics 20(3):639–652Google Scholar
  328. 328.
    Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39(2):335–341Google Scholar
  329. 329.
    Kersting-Sommerhoff BA, Diethelm L, Teitel DF et al (1989) Magnetic resonance imaging of congenital heart disease: sensitivity and specificity using receiver operating characteristic curve analysis. Am Heart J 118(1):155–161Google Scholar
  330. 330.
    Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110(2):163–169Google Scholar
  331. 331.
    Brown ML, Dearani JA, Danielson GK et al (2008) The outcomes of operations for 539 patients with Ebstein anomaly. J Thorac Cardiovasc Surg 135(5):1120–1136, 36 e1–e7Google Scholar
  332. 332.
    Malhotra SP, Petrossian E, Reddy VM et al (2009) Selective right ventricular unloading and novel technical concepts in Ebstein’s anomaly. Ann Thorac Surg 88(6):1975–1981Google Scholar
  333. 333.
    Gutberlet M, Oellinger H, Ewert P et al (2000) Pre- and postoperative evaluation of ventricular function, muscle mass and valve morphology by magnetic resonance tomography in Ebstein’s anomaly. Rofo 172(5):436–442Google Scholar
  334. 334.
    Bell A, Beerbaum P, Greil G et al (2009) Noninvasive assessment of pulmonary artery flow and resistance by cardiac magnetic resonance in congenital heart diseases with unrestricted left-to-right shunt. JACC Cardiovasc Imaging 2(11):1285–1291Google Scholar
  335. 335.
    Grosse-Wortmann L, Yun TJ, Al-Radi O et al (2008) Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 136(6):1429–1436Google Scholar
  336. 336.
    Shuhaiber JH, Ho SY, Rigby M, Sethia B (2009) Current options and outcomes for the management of atrioventricular septal defect. Eur J Cardiothorac Surg 35(5):891–900Google Scholar
  337. 337.
    Marijon E, Ou P, Fermont L et al (2006) Diagnosis and outcome in congenital ventricular diverticulum and aneurysm. J Thorac Cardiovasc Surg 131(2):433–437Google Scholar
  338. 338.
    McMahon CJ, Moniotte S, Powell AJ et al (2007) Usefulness of magnetic resonance imaging evaluation of congenital left ventricular aneurysms. Am J Cardiol 100(2):310–315Google Scholar
  339. 339.
    Ohlow MA (2006) Congenital left ventricular aneurysms and diverticula: definition, pathophysiology, clinical relevance and treatment. Cardiology 106(2):63–72Google Scholar
  340. 340.
    Hoppe UC, Dederichs B, Deutsch HJ et al (1996) Congenital heart disease in adults and adolescents: comparative value of transthoracic and transesophageal echocardiography and MR imaging. Radiology 199(3):669–677Google Scholar
  341. 341.
    Kellenberger CJ, Yoo SJ, Buchel ER (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27(1):5–18Google Scholar
  342. 342.
    Kersting-Sommerhoff BA, Diethelm L, Stanger P et al (1990) Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am Heart J 120(1):133–142Google Scholar
  343. 343.
    Kersting-Sommerhoff BA, Seelos KC, Hardy C et al (1990) Evaluation of surgical procedures for cyanotic congenital heart disease by using MR imaging. AJR Am J Roentgenol 155(2):259–266Google Scholar
  344. 344.
    Kilner PJ, Geva T, Kaemmerer H (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31(7):794–805Google Scholar
  345. 345.
    Rutledge JM, Nihill MR, Fraser CD et al (2002) Outcome of 121 patients with congenitally corrected transposition of the great arteries. Pediatr Cardiol 23(2):137–145Google Scholar
  346. 346.
    Salehian O, Schwerzmann M, Merchant N et al (2004) Assessment of systemic right ventricular function in patients with transposition of the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging. Circulation 110(20):3229–3233Google Scholar
  347. 347.
    Samyn MM (2004) A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging 20(6):569–578Google Scholar
  348. 348.
    Sarikouch S, Schaeffler R, Korperich H (2009) Cardiovascular magnetic resonance imaging for intensive care infants: safe and effective? Pediatr Cardiol 30(2):146–152Google Scholar
  349. 349.
    Wood JC (2006) Anatomical assessment of congenital heart disease. J Cardiovasc Magn Reson 8(4):595–606Google Scholar
  350. 350.
    Chaturvedi RR, Redington AN (2007) Pulmonary regurgitation in congenital heart disease. Heart 93(7):880–889Google Scholar
  351. 351.
    Geva T (2006) Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu:11–22Google Scholar
  352. 352.
    Harrild DM, Berul CI, Cecchin F et al (2009) Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation 119(3):445–451Google Scholar
  353. 353.
    Henkens IR, Straten A van, Schalij MJ et al (2007) Predicting outcome of pulmonary valve replacement in adult tetralogy of Fallot patients. Ann Thorac Surg 83(3):907–911Google Scholar
  354. 354.
    Oosterhof T, Straten A van, Vliegen HW et al (2007) Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116(5):545–551Google Scholar
  355. 355.
    Vliegen HW, Straten A van, Roos A de et al (2002) Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of Fallot. Circulation 106(13):1703–1707Google Scholar
  356. 356.
    Dincer TC, Basarici I, Calisir C et al (2008) Ruptured aneurysm of noncoronary sinus of Valsalva: demonstration with magnetic resonance imaging. Acta Radiol 49(8):889–892Google Scholar
  357. 357.
    Feldman DN, Roman MJ (2006) Aneurysms of the sinuses of Valsalva. Cardiology 106(2):73–81Google Scholar
  358. 358.
    Karaaslan T, Gudinchet F, Payot M (1999) Congenital aneurysm of sinus of valsalva ruptured into right ventricle diagnosed by magnetic resonance imaging. Pediatr Cardiol 20(3):212–214Google Scholar
  359. 359.
    Ozkara A, Cetin G, Mert M (2005) Sinus of Valsalva aneurysm: surgical approaches to complicated cases. ANZ J Surg 75(1–2):51–54Google Scholar
  360. 360.
    Bricker AO, Avutu B, Mohammed TL et al (2010) Valsalva sinus aneurysms: findings at CT and MR imaging. Radiographics 30(1):99–110Google Scholar
  361. 361.
    Crean A (2007) Cardiovascular MR and CT in congenital heart disease. Heart 93(12):1637–1647Google Scholar
  362. 362.
    Dillman JR, Yarram SG, D’Amico AR, Hernandez RJ (2008) Interrupted aortic arch: spectrum of MRI findings. AJR Am J Roentgenol 190(6):1467–1474Google Scholar
  363. 363.
    Eichhorn JG, Fink C, Delorme S (2006) Magnetic resonance blood flow measurements in the follow-up of pediatric patients with aortic coarctation – a re-evaluation. Int J Cardiol 113(3):291–298Google Scholar
  364. 364.
    Geva T, Greil GF, Marshall AC et al (2002) Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation 106(4):473–478Google Scholar
  365. 365.
    Grosse-Wortmann L, Al-Otay A, Yoo SJ (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging 2(3):219–225Google Scholar
  366. 366.
    Kastler B (2004) Value of MRI in the evaluation of congenital anomalies of the heart and great vessels. J Radiol 85(10 Pt 2):1851–1853Google Scholar
  367. 367.
    McLaren CA, Elliott MJ, Roebuck DJ (2008) Vascular compression of the airway in children. Paediatr Respir Rev 9(2):85–94Google Scholar
  368. 368.
    Nielsen JC, Powell AJ, Gauvreau K et al (2005) Magnetic resonance imaging predictors of coarctation severity. Circulation 111(5):622–628Google Scholar
  369. 369.
    Prakash A, Torres AJ, Printz BF et al (2007) Usefulness of magnetic resonance angiography in the evaluation of complex congenital heart disease in newborns and infants. Am J Cardiol 100(4):715–721Google Scholar
  370. 370.
    Prasad SK, Soukias N, Hornung T et al (2004) Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation 109(2):207–214Google Scholar
  371. 371.
    Steffens JC, Bourne MW, Sakuma H et al (1994) Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation 90(2):937–943Google Scholar
  372. 372.
    Boxt LM (2004) Magnetic resonance and computed tomographic evaluation of congenital heart disease. J Magn Reson Imaging 19(6):827–847Google Scholar
  373. 373.
    Chandran A, Fricker FJ, Schowengerdt KO et al (2005) An institutional review of the value of computed tomographic angiography in the diagnosis of congenital cardiac malformations. Cardiol Young 15(1):47–51Google Scholar
  374. 374.
    Taylor AM, Dymarkowski S, Hamaekers P et al (2005) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234(2):542–547Google Scholar
  375. 375.
    Arnold R, Ley S, Ley-Zaporozhan J et al (2007) Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 37(10):998–1006Google Scholar
  376. 376.
    Hong C, Woodard PK, Bae KT (2004) Congenital coronary artery anomaly demonstrated by three dimensional 16 slice spiral CT angiography. Heart 90(5):478Google Scholar
  377. 377.
    Turner A, Gavel G, Coutts J (2005) Vascular rings–presentation, investigation and outcome. Eur J Pediatr 164(5):266–270Google Scholar
  378. 378.
    Caputo GR, Kondo C, Masui T et al (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180(3):693–698Google Scholar
  379. 379.
    Fratz S, Hess J, Schwaiger M et al (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation 106(12):1510–1513Google Scholar
  380. 380.
    Klimes K, Abdul-Khaliq H, Ovroutski S et al (2007) Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clin Res Cardiol 96(3):160–167Google Scholar
  381. 381.
    Brenner LD, Caputo GR, Mostbeck G et al (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20(5):1246–1250Google Scholar
  382. 382.
    Hundley WG, Li HF, Lange RA et al (1995) Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation 91(12):2955–2960Google Scholar
  383. 383.
    Beerbaum P, Barth P, Kropf S et al (2009) Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance. J Magn Reson Imaging 30(5):956–966Google Scholar
  384. 384.
    Fratz S, Schuhbaeck A, Buchner C et al (2009) Comparison of accuracy of axial slices versus short-axis slices for measuring ventricular volumes by cardiac magnetic resonance in patients with corrected tetralogy of fallot. Am J Cardiol 103(12):1764–1769Google Scholar
  385. 385.
    Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB (2009) Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the US clinical trial. J Am Coll Cardiol 54(18):1722–1729Google Scholar
  386. 386.
    Buechel ER, Balmer C, Bauersfeld U et al (2009) Feasibility of perfusion cardiovascular magnetic resonance in paediatric patients. J Cardiovasc Magn Reson 11:51Google Scholar
  387. 387.
    Gutberlet M, Boeckel T, Hosten N et al (2000) Arterial switch procedure for D-transposition of the great arteries: quantitative midterm evaluation of hemodynamic changes with cine MR imaging and phase-shift velocity mapping-initial experience. Radiology 214(2):467–475Google Scholar
  388. 388.
    Sakuma H, Ichikawa Y, Chino S (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48(10):1946–1950Google Scholar
  389. 389.
    Gutberlet M, Hoffmann J, Kunzel E et al (2011) Preoperative and postoperative imaging in patients with transposition of the great arteries. Radiologe 51(1):15–22Google Scholar
  390. 390.
    Cohen MD, Johnson T, Ramrakhiani S (2010) MRI of surgical repair of transposition of the great vessels. AJR Am J Roentgenol 194(1):250–260Google Scholar
  391. 391.
    Fogel MA, Hubbard A, Weinberg PM (2001) A simplified approach for assessment of intracardiac baffles and extracardiac conduits in congenital heart surgery with two- and three-dimensional magnetic resonance imaging. Am Heart J 142(6):1028–1036Google Scholar
  392. 392.
    Hager A, Kaemmerer H, Leppert A et al (2004) Follow-up of adults with coarctation of the aorta: comparison of helical CT and MRI, and impact on assessing diameter changes. Chest 126(4):1169–1176Google Scholar
  393. 393.
    Krishnam MS, Tomasian A, Deshpande V et al (2008) Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol 43(6):411–420Google Scholar
  394. 394.
    Masui T, Katayama M, Kobayashi S et al (2000) Gadolinium-enhanced MR angiography in the evaluation of congenital cardiovascular disease pre- and postoperative states in infants and children. J Magn Reson Imaging 12(6):1034–1042Google Scholar
  395. 395.
    Potthast S, Mitsumori L, Stanescu LA et al (2010) Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging 31(1):177–184Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Achenbach
    • 2
  • J. Barkhausen
    • 1
  • M. Beer
    • 1
  • P. Beerbaum
    • 3
  • T. Dill
    • 2
  • J. Eichhorn
    • 3
  • S. Fratz
    • 3
  • M. Gutberlet
    • 1
  • M. Hoffmann
    • 1
  • A. Huber
    • 2
  • P. Hunold
    • 1
  • C. Klein
    • 2
  • G. Krombach
    • 1
  • K.-F. Kreitner
    • 1
  • T. Kühne
    • 3
  • J. Lotz
    • 1
  • D. Maintz
    • 1
  • H. Marholdt
    • 2
  • N. Merkle
    • 2
  • D. Messroghli
    • 2
  • S. Miller
    • 1
  • I. Paetsch
    • 2
  • P. Radke
    • 2
  • H. Steen
    • 2
  • H. Thiele
    • 2
  • S. Sarikouch
    • 3
  • R. Fischbach
    • 1
  1. 1.Für die AG Herz- und Gefäßdiagnostik, Deutsche RöntgengesellschaftBerlinDeutschland
  2. 2.Im Auftrag der Klinischen Kommission der Deutschen Gesellschaft für Kardiologie – Herz- und KreislaufforschungDüsseldorfDeutschland
  3. 3.Im Auftrag der Deutschen Gesellschaft für Pädiatrische KardiologieDüsseldorfDeutschland

Personalised recommendations