Der Kardiologe

, Volume 4, Issue 4, pp 295–305 | Cite as

Kardiale Ionenkanalerkrankungen

Von der Pathophysiologie bis zur Risikostratifizierung
  • C. Pott
  • D.G. Dechering
  • A. Muszynski
  • J. Köbe
  • P. Milberg
  • K. Wasmer
  • G. Mönnig
  • L. Eckardt
Interventionelle Elektrophysiologie
  • 194 Downloads

Zusammenfassung

Kardiale Ionenkanalerkrankungen beruhen auf Mutationen von Ionenkanälen und anderen Funktionsproteinen. Ohne strukturelle Veränderungen des Herzens hervorzurufen, können sie durch Störung der zellulären Repolarisation den plötzlichen Herztod hervorrufen. Ionenkanalerkrankungen lassen sich pathophysiologisch anhand der Funktion der mutierten Proteine einteilen. Für den klinischen Alltag ist die Einteilung nach klinischen und EKG-Kriterien wichtiger. Zu den häufigsten Ionenkanalerkrankungen gehören die verschiedenen QT-Syndrome, das Brugada-Syndrom und die katecholaminergen polymorphen ventrikulären Tachykardien. Therapieoptionen bestehen aus einer medikamentösen Therapie und/oder einer ICD-Implantation. Nur ein Teil der Patienten mit entsprechenden Mutation oder dem jeweils charakteristischen EKG-Bild ist symptomatisch, sodass eine Indikation zur ICD-Implantation angesichts der zahlreichen Komplikationsmöglichkeiten mit Vorsicht gestellt werden muss. Generell besteht eine Empfehlung zur ICD-Therapie bei Zustand nach überlebtem plötzlichem Herztod. Die Entscheidung zur primär-prophylaktischen Implantation ist schwieriger und sollte auf einer gründlichen Risikostratifizierung beruhen.

Schlüsselwörter

ICD Plötzlicher Herztod Brugada-Syndrom  Ionenkanalerkrankungen QT-Syndrome 

Cardiac channelopathies

From pathophysiology to risk stratification

Abstract

Cardiac channelopathies are caused by mutations of ion channels and other functional proteins. Without causing structural heart disease, they can cause sudden cardiac death by disturbing cellular repolarization. Channelopathies can be distinguished by the proteins carrying the specific mutation. More relevant for clinical practice is a nomenclature based on ECG and clinical criteria. Frequent channelopathies are the different QT syndromes, the Brugada syndrome and catecholaminergic polymorphic tachycardia. Therapy options consist of pharmacological and/or ICD therapy. Only part of the patient population with the specific mutation or characteristic ECG pattern is symptomatic; therefore and because of possible complications, ICD therapy has to be considered with caution. Generally, ICD therapy is indicated after survival of sudden cardiac death. The decision to implant an ICD for primary prevention is more difficult and should be based on a thorough risk stratification.

Keywords

ICD Sudden cardiac death Catecholaminergic polymorphic ventricular tachycardia Brugada syndrome Channelopathy QT syndromes 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Ackerman MJ, Siu BL et al (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286(18):2264–2269CrossRefPubMedGoogle Scholar
  2. 2.
    Antzelevitch C, Yan GX (2009) J wave syndromes. Heart Rhythm 7(4)549–558Google Scholar
  3. 3.
    Brignole M, Alboni P et al (2004) Guidelines on management (diagnosis and treatment) of syncope-update 2004. Executive summary. Eur Heart J 25(22):2054–2072CrossRefPubMedGoogle Scholar
  4. 4.
    Brink PA, Crotti L et al (2005) Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation 112(17):2602–2610CrossRefPubMedGoogle Scholar
  5. 5.
    Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20(6):1391–1396CrossRefPubMedGoogle Scholar
  6. 6.
    Darbar D, Kannankeril PJ et al (2008) Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117(15):1927–1935CrossRefPubMedGoogle Scholar
  7. 7.
    Dumaine R, Wang Q et al (1996) Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res 78(5):916–924PubMedGoogle Scholar
  8. 8.
    Eckardt L (2009) LQT3: Who is at risk for sudden cardiac death? Heart Rhythm 6(1):121–122CrossRefPubMedGoogle Scholar
  9. 9.
    Eckardt L, Haverkamp W et al (1998) Experimental models of torsade de pointes. Cardiovasc Res 39(1):178–193CrossRefPubMedGoogle Scholar
  10. 10.
    Eckardt L, Kirchhof P et al (1999) Transient local changes in right ventricular monophasic action potentials due to ajmaline in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 10(7):1010–1015CrossRefPubMedGoogle Scholar
  11. 11.
    Eckardt L, Probst V et al (2005) Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111(3):257–263CrossRefPubMedGoogle Scholar
  12. 12.
    Gaita F, Giustetto C et al (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108(8):965–970CrossRefPubMedGoogle Scholar
  13. 13.
    Goldenberg I, Mathew J et al (2006) Corrected QT variability in serial electrocardiograms in long QT syndrome: the importance of the maximum corrected QT for risk stratification. J Am Coll Cardiol 48(5):1047–1052CrossRefPubMedGoogle Scholar
  14. 14.
    Gussak I, Brugada P et al (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94(2):99–102CrossRefPubMedGoogle Scholar
  15. 15.
    Haissaguerre M, Derval N et al (2008) Sudden cardiac arrest associated with early repolarization. N Engl J Med 358(19):2016–2023CrossRefPubMedGoogle Scholar
  16. 16.
    Haverkamp W, Breithardt G et al (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 47(2):219–233CrossRefPubMedGoogle Scholar
  17. 17.
    Huikuri HV, Castellanos A et al (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345(20):1473–1482CrossRefPubMedGoogle Scholar
  18. 18.
    Zipes DP, Jalife J (2009) Cardiac electrophysiology – from cell to bedside, 5th edn. Saunders/ElsevierGoogle Scholar
  19. 19.
    Jung W, Andresen D et al (2006) Guidelines for the implantation of defibrillators. Clin Res Cardiol 95(12):696–708CrossRefPubMedGoogle Scholar
  20. 20.
    Junker J, Haverkamp W et al (2002) Amiodarone and acetazolamide for the treatment of genetically confirmed severe Andersen syndrome. Neurology 59(3):466PubMedGoogle Scholar
  21. 21.
    Lahat H, Pras E et al (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69(6):1378–1384CrossRefPubMedGoogle Scholar
  22. 22.
    Leenhardt A, Lucet V et al (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91(5):1512–1519PubMedGoogle Scholar
  23. 23.
    Milberg P, Eckardt L et al (2002) Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 303(1):218–225CrossRefPubMedGoogle Scholar
  24. 24.
    Milberg P, Pott C et al (2008) Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm 5(10):1444–1452CrossRefPubMedGoogle Scholar
  25. 25.
    Monnig G, Eckardt L et al (2006) Electrocardiographic risk stratification in families with congenital long QT syndrome. Eur Heart J 27(17):2074–2080CrossRefPubMedGoogle Scholar
  26. 26.
    Monnig G, Schulze-Bahr E et al (2002) Clinical aspects and molecular genetics of the Jervell- and Lange-Nielsen syndrome. Z Kardiol 91(5):380–388CrossRefPubMedGoogle Scholar
  27. 27.
    Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253CrossRefPubMedGoogle Scholar
  28. 28.
    Nuyens D, Stengl M et al (2001) Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7(9):1021–1027CrossRefPubMedGoogle Scholar
  29. 29.
    Patel U, Pavri BB (2009) Short QT syndrome: a review. Cardiol Rev 17(6):300–303CrossRefPubMedGoogle Scholar
  30. 30.
    Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14(2):61–66CrossRefPubMedGoogle Scholar
  31. 31.
    Pott C, Goldhaber JI (2006) Is the ryanodine receptor a target for antiarrhythmic therapy? Circ Res 98(10):1232–1233CrossRefPubMedGoogle Scholar
  32. 32.
    Pott C, Goldhaber JI et al (2007) Homozygous overexpression of the Na+-Ca2+ exchanger in mice: evidence for increased transsarcolemmal Ca2+ fluxes. Ann N Y Acad Sci 1099:310–314CrossRefPubMedGoogle Scholar
  33. 33.
    Pott C, Philipson KD et al (2005) Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97(12):1288–1295CrossRefPubMedGoogle Scholar
  34. 34.
    Pott C, Ren X et al (2007) Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice. Am J Physiol Cell Physiol 292(2):C968–C973CrossRefPubMedGoogle Scholar
  35. 35.
    Pott AM, Schulte J, Fortmüller L et al (2008) Homozygous overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ventricular arrhythmia in transgenic mice. 74. Jahrestagung der Deutschen Gesellschaft für Kardiologie, MannheimGoogle Scholar
  36. 36.
    Priori SG, Napolitano C et al (2002) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106(1):69–74CrossRefPubMedGoogle Scholar
  37. 37.
    Priori SG, Napolitano C et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292(11):1341–1344CrossRefPubMedGoogle Scholar
  38. 38.
    Priori SG, Napolitano C et al (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103(2):196–200PubMedGoogle Scholar
  39. 39.
    Priori SG, Schwartz PJ et al (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348(19):1866–1874CrossRefPubMedGoogle Scholar
  40. 40.
    Probst V, Veltmann C et al (n d) Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the finger Brugada syndrome registry. Circulation 121(5):635–643CrossRefGoogle Scholar
  41. 41.
    Rolf S, Bruns HJ et al (2003) The ajmaline challenge in brugada syndrome: diagnostic impact, safety and recommended protocol. Eur Heart J 24(12):1104–1112CrossRefPubMedGoogle Scholar
  42. 42.
    Schulze-Bahr E, Eckardt L et al (2003) Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 21(6):651–652CrossRefPubMedGoogle Scholar
  43. 43.
    Schwartz PJ, Priori SG et al (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103(1):89–95PubMedGoogle Scholar
  44. 44.
    Schwartz PJ, Spazzolini C et al (2006) The jervell and lange-nielsen syndrome: natural history, molecular basis and clinical outcome. Circulation 113(6):783–790CrossRefPubMedGoogle Scholar
  45. 45.
    Wilde AA, Antzelevitch C, Borggrefe M et al (2002) Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J 23:1648–1654PubMedGoogle Scholar
  46. 46.
    Splawski I, Timothy KW et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31CrossRefPubMedGoogle Scholar
  47. 47.
    Sumitomo N, Harada K et al (2003) Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 89(1):66–70CrossRefPubMedGoogle Scholar
  48. 48.
    Tristani-Firouzi M, Jensen JL et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110(3):381–388PubMedGoogle Scholar
  49. 49.
    Watanabe H, Chopra N et al (2009) Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 15(4):380–383CrossRefPubMedGoogle Scholar
  50. 50.
    Willems S, Eckardt L et al (2007) Guideline invasive electrophysiological diagnostics. Clin Res Cardiol 96(9):634–651CrossRefPubMedGoogle Scholar
  51. 51.
    Wolf CM, Berul CI (2006) Inherited conduction system abnormalities – one group of diseases, many genes. J Cardiovasc Electrophysiol 17(4):446–455CrossRefPubMedGoogle Scholar
  52. 52.
    Zareba W, Moss AJ et al (1998) Influence of genotype on the clinical course of the long-QT syndrome. International long-QT Syndrome Registry Research Group. N Engl J Med 339(14):960–965CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang L, Benson DW et al (2005) Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 111(21):2720–2726CrossRefPubMedGoogle Scholar
  54. 54.
    Zipes DP, Camm AJ et al (2006) ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing committee to develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace 8(9):746–837CrossRefPubMedGoogle Scholar
  55. 55.
    Wedekind H, Schulze-Bahr E, Debus V et al (2007) Cardiac arrhythmias and sudden death in infancy: implication for the medicolegal investigation. Int J Legal Med 121:245–257CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Pott
    • 1
  • D.G. Dechering
    • 1
  • A. Muszynski
    • 1
  • J. Köbe
    • 1
  • P. Milberg
    • 1
  • K. Wasmer
    • 1
  • G. Mönnig
    • 1
  • L. Eckardt
    • 1
  1. 1.Medizinische Klinik C – Kardiologie und AngiologieUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations