Der Kardiologe

, 2:417 | Cite as

Therapie des Diabetes mellitus Typ 2 und kardiovaskuläre Komplikationen

Was ist evidenzbasiert?
Klinische Pharmakologie
  • 78 Downloads

Zusammenfassung

Kardiovaskuläre Komplikationen verkürzen das Leben von Typ-2-Diabetikern maßgeblich. Die chronische Hyperglykämie ist nur ein Faktor, der zur Entstehung von makrovaskulären Komplikationen beiträgt. Erhöhte HbA1c-Werte weisen auf diesen Zustand hin. Unklar ist, inwieweit die therapeutische HbA1c-Senkung das kardiovaskuläre Risiko verringert. Eine positive Evidenz in Bezug auf kardiovaskuläre Endpunkte ist für Lebensstilmodifikationen, Acarbose und Metformin zu erkennen. Insulinotrope Substanzen (Sulfonylharnstoffe, Glinide, Insulin) haben ein erhöhtes Risiko für Hypoglykämien und Gewichtszunahme, was möglicherweise die kardiovaskuläre Morbidität und Mortalität negativ beeinflusst. Dies gilt besonders für kardial vorbelastete Patienten. Bei den neueren Substanzen wie den Glitazonen gibt es positive Zeichen für den Einsatz von Pioglitazon bei Patienten ohne Herzinsuffizienz. Für die Inkretin-Therapeutika (Exenatid, Sitagliptin) liegen bisher keine Studien mit kardiovaskulären Endpunkten vor. Zusammenfassend legen die vorliegenden Studien und pathophysiologischen Überlegungen den Schluss nahe, dass zur Verhinderung kardiovaskulärer Komplikationen möglichst früh, d. h. im prädiabetischen Stadium, therapiert werden sollte. Nichtinsulinotrope Substanzen führen in der Regel zu keinen Hypoglykämien und sind daher bei kardial vorbelasteten Patienten zu bevorzugen. Über die Hyperglykämiebehandlung hinaus ist die Behandlung klassischer kardialer Risikofaktoren entscheidend.

Schlüsselwörter

Diabetes mellitus Typ 2 Kardiovaskuläre Komplikationen Chronische Hyperglykämie HbA1c Antidiabetika 

Treatment of type 2 diabetes mellitus and cardiovascular complications:

What is evidence based?

Abstract

Cardiovascular events are the main life-threatening complications in patients with type 2 diabetes. Chronic hyperglycaemia is thought to be only one factor contributing to the development of macrovascular disease. Elevated glycosylated haemoglogin is indicative for this condition. It is, however, not clear whether therapeutic lowering of glycosylated haemoglobin will lead to a reduction in cardiovascular risk. Lifestyle modifications, acarbose and metformin apparently reduce cardiovascular events and should therefore be the mainstay of type 2 diabetes therapy. Insulin-elevating substances (sulphonylureas, meglitinides and ultimately insulin) impose a higher risk for hypoglycaemic episodes and weight gain with potentially harmful effects especially on patients with established cardiovascular disease. Of the newer drugs, pioglitazone has been shown to reduce cardiovascular risk, but may negatively affect patients with heart failure. Modulators of the incretin system (exenatide, sitagliptine) have not yet been investigated for cardiovascular outcome. Taken together, available studies suggest that a reduction of cardiovascular risk depends crucially on early therapeutic interventions, the use of non-insulin-releasing substances, prevention of hypoglycaemias and treatment of classic cardiovascular risk factors.

Keywords

Type 2 diabetes mellitus Cardiovascular complications Chronic hyperglycaemia HbA1c Antidiabetics 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Scherbaum WA, Landgraf R (2002) Epidemiologie und Verlauf des Diabetes in Deutschland. Evidenzbasierte Diabetes-Leitlinie der DDG. Deutsche Diabetes-GesellschaftGoogle Scholar
  2. 2.
    Edelstein SL, Knowler WC, Bain RP et al. (1997) Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes 46: 701–710PubMedCrossRefGoogle Scholar
  3. 3.
    Fuller JH, Shipley MJ, Rose G et al. (1980) Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1: 1373–1376PubMedCrossRefGoogle Scholar
  4. 4.
    Tuomilehto J, Lindstrom J, Eriksson JG et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344: 1343–1350PubMedCrossRefGoogle Scholar
  5. 5.
    Pan XR, Li GW, Hu YH et al. (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. the Da Qing IGT and diabetes study. Diabetes Care 20: 537–544PubMedCrossRefGoogle Scholar
  6. 6.
    Knowler WC, Barrett-Connor E, Fowler SE et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393–403PubMedCrossRefGoogle Scholar
  7. 7.
    Turner RC, Cull CA, Frighi V, Holman RR (1999) Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281: 2005–2012PubMedCrossRefGoogle Scholar
  8. 8.
    Chiasson JL, Josse RG, Gomis R et al. (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290: 486–494PubMedCrossRefGoogle Scholar
  9. 9.
    Buchanan TA, Xiang AH, Peters RK et al. (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 51: 2796–2803PubMedCrossRefGoogle Scholar
  10. 10.
    Hansson L, Lindholm LH, Niskanen L et al. (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353: 611–616PubMedCrossRefGoogle Scholar
  11. 11.
    Julius S, Kjeldsen SE, Weber M et al. (2004) Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 363: 2022–2031PubMedCrossRefGoogle Scholar
  12. 12.
    Petersen JL, McGuire DK (2005) Impaired glucose tolerance and impaired fasting glucose – a review of diagnosis, clinical implications and management. Diab Vasc Dis Res 2: 9–15PubMedCrossRefGoogle Scholar
  13. 13.
    Khaw KT, Wareham N, Bingham S et al. (2004) Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med 141: 413–420PubMedGoogle Scholar
  14. 14.
    Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22: 233–240PubMedCrossRefGoogle Scholar
  15. 15.
    Nathan DM, Buse JB, Davidson MB et al. (2008) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: update regarding thiazolidinediones: a consensus statement from the american diabetes association and the european association for the study of diabetes. Diabetes Care 31: 173–175PubMedCrossRefGoogle Scholar
  16. 16.
    Ratner R, Goldberg R, Haffner S et al. (2005) Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 28: 888–894PubMedCrossRefGoogle Scholar
  17. 17.
    Herman WH, Hoerger TJ, Brandle M et al. (2005) The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med 142: 323–332PubMedGoogle Scholar
  18. 18.
    Sjostrom L, Lindroos AK, Peltonen M et al. (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351: 2683–2693PubMedCrossRefGoogle Scholar
  19. 19.
    Wadden TA, Berkowitz RI, Womble LG et al. (2005) Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med 353: 2111–2120PubMedCrossRefGoogle Scholar
  20. 20.
    Torp-Pedersen C, Caterson I, Coutinho W et al. (2007) Cardiovascular responses to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur Heart J 28: 2915–2923PubMedCrossRefGoogle Scholar
  21. 21.
    Scheen AJ, Finer N, Hollander P et al. (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368: 1660–1672PubMedCrossRefGoogle Scholar
  22. 22.
    Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L (2004) XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27: 155–161PubMedCrossRefGoogle Scholar
  23. 23.
    Riveline JP, Danchin N, Ledru F et al. (2003) Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab 29: 207–222PubMedCrossRefGoogle Scholar
  24. 24.
    Meinert CL, Knatterud GL, Prout TE, Klimt CR (1970) A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 19 (Suppl): 789–830PubMedGoogle Scholar
  25. 25.
    Johnsen SP, Monster TB, Olsen ML et al. (2006) Risk and short-term prognosis of myocardial infarction among users of antidiabetic drugs. Am J Ther 13: 134–140PubMedCrossRefGoogle Scholar
  26. 26.
    UKPDS-Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352: 837–853CrossRefGoogle Scholar
  27. 27.
    Zhou G, Myers R, Li Y et al. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167–1174PubMedGoogle Scholar
  28. 28.
    Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1: 15–25PubMedCrossRefGoogle Scholar
  29. 29.
    UKPDS-Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352: 854–865CrossRefGoogle Scholar
  30. 30.
    Eurich DT, McAlister FA, Blackburn DF et al. (2007) Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ 335: 497PubMedCrossRefGoogle Scholar
  31. 31.
    Chiquette E, Ramirez G, Defronzo R (2004) A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch Intern Med 164: 2097–2104PubMedCrossRefGoogle Scholar
  32. 32.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356: 2457–2471PubMedCrossRefGoogle Scholar
  33. 33.
    Singh S, Loke YK, Furberg CD (2007) Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298: 1189–1195PubMedCrossRefGoogle Scholar
  34. 34.
    Dormandy JA, Charbonnel B, Eckland DJ et al. (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366: 1279–1289PubMedCrossRefGoogle Scholar
  35. 35.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298: 1180–1188PubMedCrossRefGoogle Scholar
  36. 36.
    Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368: 1696–1705PubMedCrossRefGoogle Scholar
  37. 37.
    Amori RE, Lau J, Pittas AG (2007) Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 298: 194–206PubMedCrossRefGoogle Scholar
  38. 38.
    Heine RJ, Van Gaal LF, Johns D et al. (2005) Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 143: 559–569PubMedGoogle Scholar
  39. 39.
    Nikolaidis LA, Mankad S, Sokos GG et al. (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109: 962–965PubMedCrossRefGoogle Scholar
  40. 40.
    Ban K, Noyan-Ashraf MH, Hoefer J et al. (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117: 2340–2350PubMedCrossRefGoogle Scholar
  41. 41.
    Charbonnel B, Karasik A, Liu J et al. (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 29: 2638–2643PubMedCrossRefGoogle Scholar
  42. 42.
    Nauck MA, Meininger G, Sheng D et al. (2007) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 9: 194–205PubMedCrossRefGoogle Scholar
  43. 43.
    The Diabetes Control and Complications Trials Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977–986CrossRefGoogle Scholar
  44. 44.
    Nathan DM, Cleary PA, Backlund JY et al. (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353: 2643–2653PubMedCrossRefGoogle Scholar
  45. 45.
    Malmberg K, Norhammar A, Wedel H, Ryden L (1999) Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 99: 2626–2632PubMedGoogle Scholar
  46. 46.
    Cheung NW, Wong VW, McLean M (2006) The Hyperglycemia: Intensive Insulin Infusion in Infarction (HI-5) study: a randomized controlled trial of insulin infusion therapy for myocardial infarction. Diabetes Care 29: 765–770PubMedCrossRefGoogle Scholar
  47. 47.
    Pinto DS, Skolnick AH, Kirtane AJ et al. (2005) U-shaped relationship of blood glucose with adverse outcomes among patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 46: 178–180PubMedCrossRefGoogle Scholar
  48. 48.
    Svensson AM, McGuire DK, Abrahamsson P, Dellborg M (2005) Association between hyper- and hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J 26: 1255–1261PubMedCrossRefGoogle Scholar
  49. 49.
    Mellbin LG, Malmberg K, Norhammar A et al. (2008) The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 29: 166–176PubMedCrossRefGoogle Scholar
  50. 50.
    McGuire DK, Newby LK, Bhapkar MV et al. (2004) Association of diabetes mellitus and glycemic control strategies with clinical outcomes after acute coronary syndromes. Am Heart J 147: 246–252PubMedCrossRefGoogle Scholar
  51. 51.
    Stratton IM, Adler AI, Neil HA et al. (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321: 405–412PubMedCrossRefGoogle Scholar
  52. 52.
    Patel A, MacMahon S, Chalmers J et al. (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358: 2560–2572PubMedCrossRefGoogle Scholar
  53. 53.
    Gerstein HC, Miller ME, Byington RP et al. (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559PubMedCrossRefGoogle Scholar
  54. 54.
    Scherbaum WA, Landgraf R (2003) Antihyperglykämische Therapie des Diabetes mellitus Typ 2. Evidenzbasierte Leitlinie der DDG. Deutsche Diabetes GesellschaftGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Institut für Experimentelle und Klinische Pharmakologie und ToxikologieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations