Der Kardiologe

, Volume 2, Issue 4, pp 312–319

HDL

Neue Aspekte zu Physiologie und Therapie
Klinische Pharmakologie
  • 74 Downloads

Zusammenfassung

Lipidtherapie ist ein Eckpfeiler der Atheroskleroseprävention. In den letzten Jahren sind neben dem LDL-Cholesterin auch erhöhte Triglyzeridwerte und insbesondere erniedrigte HDL-Cholesterinwerte in den Fokus gerückt, da erniedrigte HDL-Cholesterinwerte einen unabhängigen Risikofaktor darstellen. Einerseits repräsentiert ein erniedrigter HDL-Cholesterinwert einen verminderten Cholesterinrücktransport, andererseits können HDL direkt über eine Inhibierung der Monozytenadhäsion und der Beeinflussung der Endothelproliferation ins Atherosklerosegeschehen eingreifen. Lebensstilmaßnahmen (körperliche Aktivität, Beendigung des Rauchens, Gewichtsreduktion, Alkohol) können den HDL-Spiegel um bis zu 10% anheben. Unter den zugelassenen Medikamenten hat Niacin den stärksten Effekt (bis 35%). Aber auch Fibrate, Statine und begrenzt Ezetimib und Austauscherharze steigern den HDL-Spiegel. Allerdings führt nicht jeder medikamentös induzierte HDL-Cholesterinanstieg auch zu einer Reduktion kardiovaskulärer Ereignisse, wie Studien mit dem CETP-Inhibitor Torcetrapib zeigen. Bei allen medikamentösen Ansätzen muss daher geprüft werden, ob sie neben dem HDL-Cholesterinspiegel auch die kardiovaskuläre Ereignisrate verändern. Dies ist für Niacin, Fibrate und Statine gezeigt. Bei Patienten mit Atherosklerosenachweis und klinisch relevanter HDL-Erniedrigung sollte am ehesten die Kombination Statin mit Niacin eingesetzt werden, bei HDL-Erniedrigung im Rahmen einer isolierten Hypertriglyzeridämie (LDL <100 mg/dl) kann auch eine Fibrat-Therapie diskutiert werden.

Schlüsselwörter

Niacin Fibrat Laropiprant Torcetrapib Atherosklerose 

HDL

New physiological and therapeutic aspects

Abstract

Lipid therapy is one of the cornerstones of atherosclerosis prevention. During recent years, attention has shifted from elevated LDL cholesterol to the additional consideration of elevated triglyceride and particularly reduced HDL cholesterol concentrations, as low HDL cholesterol is a strong independent risk factor. HDLs are not only involved in reverse cholesterol transport, but also inhibit monocyte adhesion and affect endothelial proliferation and are thus involved in atherosclerosis in multiple ways. Life style modification (physical activity, smoking cessation, weight reduction, alcohol) can raise HDL cholesterol by up to 10%. Of all the approved drugs, niacin has the strongest HDL-raising effect (up to 35%). However, fibrates, statins and to a certain extent ezetimibe and resins also elevate HDL cholesterol. Since studies with the cholesteryl ester transfer protein (CETP) inhibitor Torcetrapib have shown that an increase in HDL cholesterol is not always associated with a reduction in cardiovascular events, it is necessary to evaluate all therapies in outcome studies. Niacin, fibrates and statins have been demonstrated to be beneficial. In patients with atherosclerosis and low HDL cholesterol, a combination of a statin with niacin should be the primary approach. In patients with isolated hypertriglyceridemia (LDL cholesterol <100 mg/dl) and low HDL cholesterol, fibrates may be an alternative.

Keywords

Niacin Fibrate Laropiprant Torcetrapib Atherosclerosis 

Literatur

  1. 1.
    Brown BG, Zhao XQ, Chait A et al. (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345: 1583–1592PubMedCrossRefGoogle Scholar
  2. 2.
    Canner PL, Berge KG, Wenger NK et al. (1986) Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol 8: 1245–1255PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen JC, Kiss RS, Pertsemlidis A et al. (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305: 869–872PubMedCrossRefGoogle Scholar
  4. 4.
    Couillard C, Després JP, Lamarche B et al. (2001) Effects of endurance training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 21: 1226–1232PubMedCrossRefGoogle Scholar
  5. 5.
    Dattilo AM, Kris-Etherton PM (1992) Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr 56: 320–328PubMedGoogle Scholar
  6. 6.
    Despres JP, Golay A, Sjostrom L (2005) Rimonabant in Obesity-Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121–2134PubMedCrossRefGoogle Scholar
  7. 7.
    Frick MH, Elo O, Haapa K et al. (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia – safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237–1245PubMedGoogle Scholar
  8. 8.
    Frikke-Schmidt R, Nordestgaard BG, Stene MC et al. (2008) Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299: 2524–2532PubMedCrossRefGoogle Scholar
  9. 9.
    Keech A, Simes RJ, Barter P et al. (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500): 1849–1861PubMedCrossRefGoogle Scholar
  10. 10.
    Kostner GM, Scharnagl H, Kostner K, März W (2007) Zusammensetzung und Stoffwechsel der Lipoproteine. In: Schwandt P, Parhofer KG (Hrsg) Handbuch der Fettstoffwechselstörungen. 3. Aufl. Schattauer, Stuttgart, S 2–65Google Scholar
  11. 11.
    Maeda K, Noguchi Y, Fukui T (2003) The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: a meta-analysis. Prev Med 37: 283–290PubMedCrossRefGoogle Scholar
  12. 12.
    Meksawan K, Pendergast DR, Leddy JJ et al. (2004) Effect of low and high fat diets on nutrient intakes and selected cardiovascular risk factors in sedentary men and women. J Am Coll Nutr 23: 131–140PubMedGoogle Scholar
  13. 13.
    Nissen SE, Tardif JC, Nicholls SJ et al. (2007) Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 356(13): 1304–1316PubMedCrossRefGoogle Scholar
  14. 14.
    Nissen SE, Tsunoda T, Tuzcu EM et al. (2003) Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290(17): 2292–2300PubMedCrossRefGoogle Scholar
  15. 15.
    Paolini JF, Mitchel YB, Reyes R et al. (2008) Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am J Cardiol 101(5): 625–630PubMedCrossRefGoogle Scholar
  16. 16.
    Pedersen TR, Assmann G, Bassand JP et al. (2006) Reducing residual cardiovascular risk: the relevance of raising high-density lipoprotein cholesterol in patients on cholesterol in patients on cholesterol-lowering treatment. Diabetes Vasc Dis Res 3(2): S1–S12Google Scholar
  17. 17.
    Rimm EB, Williams P, Fosher K et al. (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319: 1523–1528PubMedGoogle Scholar
  18. 18.
    Rohrer L, Hersberger M, von Eckardsteinn A (2004) High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr Opin Lipidol 15: 269–278PubMedCrossRefGoogle Scholar
  19. 19.
    Schaefer JR, Schweer H, Ikewaki K et al. (1999) Metabolic basis of high density lipoproteins and apolipoprotein A-I increase by HMG-CoA reductase inhibition in healthy subjects and a patient with coronary artery disease. Atherosclerosis 144: 177–184PubMedCrossRefGoogle Scholar
  20. 20.
    Staels B, Dallongeville J, Auwerx J et al. (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98: 2088–2093PubMedGoogle Scholar
  21. 21.
    Tardif JC, Grégoire J, L’Allier PL et al. (2007) Effect of rHDL on Atherosclerosis-Safety and Efficacy (ERASE) Investigators. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297(15): 1675–1682PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor AJ, Sullenberger LE, Lee HJ et al. (2004) Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110: 3512–3517PubMedCrossRefGoogle Scholar
  23. 23.
    von Eckardstein A, Assmann G (2007) Störungen im Stoffwechsel der High-density-Lipoproteine. In: Schwandt P, Parhofer KG (Hrsg) Handbuch der Fettstoffwechselstörungen. 3. Aufl. Schattauer, Stuttgart, S 112–146Google Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Medizinische Klinik IIKlinikum der Universität München – GroßhadernMünchenDeutschland

Personalised recommendations