Cell Therapy—a Basic Science Primer for the Sports Medicine Clinician

  • Bijan Dehghani
  • Scott RodeoEmail author
Stem Cells in Orthopaedic Surgery (J Dragoo and K Jones, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Stem Cells in Orthopaedic Surgery


Purpose of Review

The emergence of cell-based therapies has brought much excitement to the field of orthopedic sports medicine. However, the significant inconsistency of reporting has led to the poor understanding, misinformation, and false expectations for patients and clinicians alike. In this paper, we aim to clarify the available cell-therapy treatments and summarize some of the latest research.

Recent Findings

Although this technology is in early development, our understanding of cell biology has grown significantly over the last decade. Furthermore, it is becoming evident that tissue specificity may play a significant role in determining the effectiveness and overall clinical benefit attributed to cell therapy.


Cell therapy is an emerging field with tremendous potential for clinically significant benefit. However, in its current state, clinical application of these treatments is limited by federal regulations, variability in formulation, and limited understanding of the biologic activity of various cell formulations.


Cell therapy Bioengineering Regenerative medicine Orthobiologics Sports medicine Orthopedics 


Compliance with Ethical Standards

Conflict of Interest

Dr. Scott Rodeo and Mr. Bijan Dehghani declare that they have no conflict of interest.

Dr. Scott Rodeo reports personal fees from Ortho RTI and personal fees from Flexion Therapeutics, Inc. outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Brook P. The burden of musculoskeletal disease – a global perspective. Clin Rheumatol. 2006;25:778–81.CrossRefGoogle Scholar
  2. 2.
    Fralinger DJ, Kaplan DJ, Weinberg ME, Strauss EJ, Jazrawi LM. Biological treatments for tendon and ligament abnormalities: a critical analysis review. JBJS Rev. 2016;4(6). doi: 10.2106/JBJS.RVW.15.00079CrossRefGoogle Scholar
  3. 3.
    De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.PubMedCrossRefGoogle Scholar
  4. 4.
    •• Food and Drug Administration USDoHaHS. Regulatory Considerations for Human Cells, Tissues and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use. In: Research USDoHaHSFaDACfBEa, ed; 2017. This reference lays the foundation for regulatory environment surrounding cell therapy in the United States. Google Scholar
  5. 5.
    Chirba MA, Sweetapple B, Hannon CP, Anderson JA. FDA regulation of adult stem cell therapies as used in sports medicine. J Knee Surg. 2015;28(01):055–62.CrossRefGoogle Scholar
  6. 6.
    LaPrade RF, Dragoo JL, Koh JL, Murray IR, Geeslin AG, Chu CR. AAOS research symposium updates and consensus: biologic treatment of orthopaedic injuries. J Am Acad Orthop Surg. 2016;24(7):e62–78.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell. 2007;1:35–8. Scholar
  8. 8.
    Owen M, Friedenstein A. Marrow-derived osteogenic precursors. CIBA Found Symp. 1988;136:42–60.PubMedGoogle Scholar
  9. 9.
    Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988;10:63–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Friedenstein AJ. Johan N.M. Heersche, John A. Kanis editors. Osteogenic stem cells in bone marrow. In: Bone and Mineral Research, Elsevier; 1990.Google Scholar
  11. 11.
    Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25(2):207.PubMedCrossRefGoogle Scholar
  13. 13.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6(6):1445–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27.Google Scholar
  16. 16.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383.PubMedCrossRefGoogle Scholar
  18. 18.
    Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gramlich OW, Burand AJ, Brown AJ, Deutsch RJ, Kuehn MH, Ankrum JA. Cryopreserved mesenchymal stromal cells maintain potency in a retinal ischemia/reperfusion injury model: toward an off-the-shelf therapy. Sci Rep. 2016;6:26463.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chinnadurai R, Rajan D, Qayed M, Arafat D, Garcia M, Liu Y, et al. Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach. Cell Rep. 2018;22(9):2504–17.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kuhbier JW, Weyand B, Radtke C, Vogt PM, Kasper C, Reimers K. Isolation, characterization, differentiation, and application of adipose-derived stem cells. In: Bioreactor Systems for Tissue Engineering II. Berlin: Springer; 2010. (pp. 55-105).CrossRefGoogle Scholar
  22. 22.
    Zuk PA, Zhu MI, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res. 2014;472(5):1357–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Maslova O, Novak M, Kruzliak P. Umbilical cord tissue-derived cells as therapeutic agents. Stem Cells Int. 2015;2015.CrossRefGoogle Scholar
  25. 25.
    Pogozhykh O, Prokopyuk V, Figueiredo C, Pogozhykh D. Placenta and placental derivatives in regenerative therapies: experimental studies, history, and prospects. Stem Cells Int. 2018;2018.Google Scholar
  26. 26.
    Kamei N, Atesok K, Ochi M. The use of endothelial progenitor cells for the regeneration of musculoskeletal and neural tissues. Stem Cells Int. 2017;2017.Google Scholar
  27. 27.
    Chong MS, Ng WK, Chan JK. Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med. 2016;5(4):530–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells. 2011;29(11):1650–5.CrossRefGoogle Scholar
  29. 29.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med. 2017;6(5):1316–20.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Peng XG, Bai Y, James JR, Shlapak DP, Ju S. Transplanted endothelial progenitor cells improve ischemia muscle regeneration in mice by diffusion tensor MR imaging. Stem Cells Int. 2016;2016.Google Scholar
  32. 32.
    Liotta F, Annunziato F, Castellani S, Boddi M, Alterini B, Castellini G, et al. Therapeutic efficacy of autologous non-mobilized enriched circulating endothelial progenitors in patients with critical limb ischemia―the SCELTA trial―. Circ J. 2018;82(6):1688–98.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng B Rev. 2014;20(3):190–9.CrossRefGoogle Scholar
  34. 34.
    Kawakami Y, Matsumoto T, Mifune Y, Fukui T, Patel KG, Walker GN, et al. Therapeutic potential of endothelial progenitor cells in the field of orthopaedics. Curr Stem Cell Res Ther. 2017;12(1):3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    •• Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316. This reference is the first to describe a tissue specific set of growth factors referred to as Angiocrine factors. This brings to light the importance, and potential therapeutic application, of tissue specific cells for promoting regeneration and healing.–25.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lebaschi A, Nakagawa Y, Wada S, Cong GT, Rodeo SA. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics. Ann N Y Acad Sci. 2017;1410(1):44.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yuan X, Eng GM, Arkonac DE, Chao PH, Vunjak-Novakovic G. Endothelial cells enhance the migration of bovine meniscus cells. Arthritis Rheumatol. 2015;67(1):182–92.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gholobova D, Gerard M, Terrie L, Desender L, Shansky J, Vandenburgh H, Thorrez L. Coculture method to obtain endothelial networks within human tissue-engineered skeletal muscle. In: Myogenesis. New York: Humana press; 2019. (pp. 169-183).Google Scholar
  40. 40.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219.PubMedCrossRefGoogle Scholar
  41. 41.
    • Lee KJ, Clegg PD, Comerford EJ, Canty-Laird EG. Ligament-derived stem cells: Identification, characterization, and therapeutic application. Stem Cells Int. 2017;2017. This reference reports the ligament specific stem cells as a unique class of cells with the potential of tissue maintenance and regeneration in structures initially thought to have no intrinsic healing potential. Google Scholar
  42. 42.
    • Gamer LW, Shi RR, Gendelman A, Mathewson D, Gamer J, Rosen V. Identification and characterization of adult mouse meniscus stem/progenitor cells. Connect Tissue Res. 2017;58(3–4):238–45 This reference identifies a population of cells with stem like capacity in meniscal tissue. Providing a new avenue for researching meniscus regeneration and healing. PubMedCrossRefGoogle Scholar
  43. 43.
    Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS. Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec. 2007;290(1):48–58.CrossRefGoogle Scholar
  44. 44.
    Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(6):889–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Muhammad H, Schminke B, Bode C, Roth M, Albert J, von der Heyde S, et al. Human migratory meniscus progenitor cells are controlled via the TGF-β pathway. Stem Cell Reports. 2014;3(5):789–803.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch PA, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9(1):29.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nature Biotech. 2015;33:890–1.CrossRefGoogle Scholar
  50. 50.
    Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy-future or trend? Arthritis Res Ther. 2012;14(4):219.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    •• Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. JBJS. 2017;99(20):1769–79 This reference cumulates the reported data on platelet-rich-plasma, its composition, and preparation protocols. Using this data, they highlight the significant inconsistencies contributing to the wide spread variability associated with the use of platelet-rich-plasma. This paper also suggests reporting measures that should be followed for future studies using platelet-rich-plasma to allow for consistent and accurate data. CrossRefGoogle Scholar
  52. 52.
    Moatshe G, Morris ER, Cinque ME, Pascual-Garrido C, Chahla J, Engebretsen L, et al. Biological treatment of the knee with platelet-rich plasma or bone marrow aspirate concentrates: a review of the current status. Acta Orthop. 2017;88(6):670–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    • Fitzpatrick J, Bulsara M, Zheng MH. The effectiveness of platelet-rich plasma in the treatment of tendinopathy: a meta-analysis of randomized controlled clinical trials. Am J Sports Med. 2017;45(1):226–33. This reference reports on the clinical benefits of using platelet-rich-plasma for tendinopathy. While platelet-rich-plasma is used for many indications, only tendinopathy has strong clinical data to support its use. PubMedCrossRefGoogle Scholar
  54. 54.
    Woodell-May J, Matuska A, Oyster M, Welch Z, O'Shaughnessey K, Hoeppner J. Autologous protein solution inhibits MMP-13 production by IL-1β and TNFα-stimulated human articular chondrocytes. J Orthop Res. 2011;29(9):1320–6.PubMedCrossRefGoogle Scholar
  55. 55.
    O'Shaughnessey K, Matuska A, Hoeppner J, Farr J, Klaassen M, Kaeding C, et al. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors. J Orthop Res. 2014;32(10):1349–55.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Meijer H, Reinecke J, Becker C, Tholen G, Wehling P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res. 2003;52(10):404–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Evans CH, Chevalier X, Wehling P. Autologous conditioned serum. Phys Med Rehab Clin N Am. 2016;27(4):893–908.CrossRefGoogle Scholar
  58. 58.
    Carter DB, Deibel MR, Dunn CJ, Tomich CS, Laborde AL, Slightom JL, et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature. 1990;344(6267):633–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990;343(6256):336.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang S, Wei X, Zhou J, Zhang J, Li K, Chen Q, et al. Identification of α2-macroglobulin as a master inhibitor of cartilage-degrading factors that attenuates the progression of posttraumatic osteoarthritis. Arthritis Rheumatol. 2014;66(7):1843–53.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dragoo JL, MR DB. Stem cell yield after bone marrow concentration. Orthop J Sports Med. 2017;5(7_suppl6):2325967117S00445.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    •• Patterson TE, Boehm C, Nakamoto C, Rozic R, Walker E, Piuzzi NS, et al. The Efficiency of Bone Marrow Aspiration for the Harvest of Connective Tissue Progenitors from the Human Iliac Crest. J Bone Joint Surg Am. 2017;99(19):1673–82. This reference reports the miniscule concentration of “stem cells” present from bone marrow aspirate. Although incorrect, many clinicians believe bone marrow aspirate to be robust in stem cells, however, the actual concentration is significantly lower than what is believed to be clinically effective. These results could significantly influence the use of bone marrow aspirate clinically. PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Qadan MA, Piuzzi NS, Boehm C, Bova W, Moos M Jr, Midura RJ, et al. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Cytotherapy. 2018;20(3):343–60.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Davies BM, Snelling SJ, Quek L, Hakimi O, Ye H, Carr A, et al. Identifying the optimum source of mesenchymal stem cells for use in knee surgery. J Orthop Res. 2017;35(9):1868–75.PubMedCrossRefGoogle Scholar
  65. 65.
    McLain RF, Fleming JE, Boehm CA, Muschler GF. Aspiration of osteoprogenitor cells for augmenting spinal fusion: comparison of progenitor cell concentrations from the vertebral body and iliac crest. J Bone Joint Surg Am. 2005;87(12):2655.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. JBJS. 2013;95(14):1312–6.CrossRefGoogle Scholar
  67. 67.
    Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M, et al. Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop. 2016;7(9):592.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Uchida R, Horibe S, Nakamura N. Stem cell-based therapy in anterior cruciate ligament repair. Annals of Joint. 2017;30:2(11).Google Scholar
  69. 69.
    Raines BT, Naclerio E, Sherman SL. Management of Anterior Cruciate Ligament Injury: What's in and What's out? Indian J Orthop. 2017;51(5):563.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yu H, Adesida AB, Jomha NM. Meniscus repair using mesenchymal stem cells–a comprehensive review. Stem Cell Res Ther. 2015;6(1):86.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nerurkar NL, Han W, Mauck RL, Elliott DM. Homologous structure–function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds. Biomaterials. 2011;32(2):461–8.PubMedCrossRefGoogle Scholar
  72. 72.
    • Piontek T, Ciemniewska-Gorzela K, Naczk J, Jakob R, Szulc A, Grygorowicz M, et al. Complex meniscus tears treated with collagen matrix wrapping and bone marrow blood injection: a 2-year clinical follow-up. Cartilage. 2016;7(2):123–39. In this reference they demonstrate how complex meniscal tears, otherwise thought to be irreparable, have shown positive clinical outcomes when the repair is augmented with acellular collagen scaffold. This goes against the dogma of meniscus treatment, suggesting a potential for the repair of complex meniscal lesions. PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    • Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis Cartilage. 2015;23(6):1007–17. In the paper, they demonstrate how meniscal injury causes an influx of mesenchymal stem (stromal) cells with the potential for healing. Not only does this suggest an intrinsic healing mechanism, it also highlights a potential cell source for therapy. PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473(7):2316–26.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol. 2015;11(4):223.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Apostolakos J, Durant TJ, Dwyer CR, Russell RP, Weinreb JH, Alaee F, et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 2014;4(3):333.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    • Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study. Am J Sports Med. 2017;45(9):2010–8. This reference reports on the use of adipose derived mesenchymal stem (stromal) cells in conjunction with fibrin based glue for rotator cuff repair, giving a possible answer to the question of delivery vehicle for cell therapy. This also suggest a role for cell therapy in rotator cuff repair. PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hernigou P, Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zong JC, Mosca MJ, Degen RM, Lebaschi A, Carballo C, Carbone A, et al. Involvement of Indian hedgehog signaling in mesenchymal stem cell–augmented rotator cuff tendon repair in an athymic rat model. J Shoulder Elb Surg. 2017;26(4):580–8.CrossRefGoogle Scholar
  80. 80.
    Omi R, Gingery A, Steinmann SP, Amadio PC, An KN, Zhao C. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells. J Shoulder Elb Surg. 2016;25(3):469–77.CrossRefGoogle Scholar
  81. 81.
    Peach MS, Ramos DM, James R, Morozowich NL, Mazzocca AD, Doty SB, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12(4):e0174789.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rothrauff BB, Smith CA, Ferrer GA, Novaretti JV, Pauyo T, Chao T, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elb Surg. 2019;28(4):654–64.CrossRefGoogle Scholar
  83. 83.
    • Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O’Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45(1):82–90. This reference is the only placebo controlled, single blinded study assessing the clinical efficacy of using bone marrow aspirate for the treatment of OA. Not only does it provide a process for performing this type of study, they also demonstrate improvements in pain scores. This suggest a role of bone marrow aspirate in knee OA therapy. PubMedCrossRefGoogle Scholar
  84. 84.
    • Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid–based scaffold with activated bone marrow–derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44(11):2846–54. This study reports the added advantage of using bone-marrow derived mesenchymal stem (stromal) cells in conjunction with hyaluronic acid based scaffolds in the treatment of cartilage defect. This shows a sustained benefit of this therapy compared to current treatment options suggesting a potential for therapies with long-term clinical benefit. PubMedCrossRefGoogle Scholar
  85. 85.
    Gobbi A, Lad D, Karnatzikos G. The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2170–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hospital for Special SurgeryNew YorkUSA

Personalised recommendations