Advertisement

Current Reviews in Musculoskeletal Medicine

, Volume 10, Issue 4, pp 507–516 | Cite as

Lumbar Disc Herniation

  • Raj M. Amin
  • Nicholas S. Andrade
  • Brian J. NeumanEmail author
Treatment of Lumbar Degenerative Pathology (HJ Kim and G Mundis, section editors)
Part of the following topical collections:
  1. Topical Collection on Treatment of Lumbar Degenerative Pathology

Abstract

Purpose of Review

Substantial advancements have been made in the cause, diagnosis, imaging, and treatment options available for patients with lumbar disc herniation (LDH). We examined the current evidence and highlight the concepts on the frontline of discovery in LDH.

Recent Findings

There are a myriad of novel etiologies of LDH detailed in recent literature including inflammatory factors and infectious microbes. In the clinical setting, recent data focuses on improvements in computer tomography as a diagnostic tool and non-traditional injection options including tumor necrosis alpha inhibitors and platelet-rich plasma. Operative treatment outcomes have focused on minimally invasive endoscopic approaches and demonstrated robust 5-year post-operative outcomes.

Summary

Advances in the molecular etiology of LDH will continue to drive novel treatment options. The role of endoscopic treatment for LDH will continue to evolve. Further research into10-year outcomes will be necessary as this surgical approach continues to gain widespread popularity.

Keywords

Lumbar disc herniation Diagnosis of lumbar disc herniation Non-operative treatment of lumbar disc herniation Operative treatment of lumbar disc herniation Minimally invasive discectomy Endoscopic discectomy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Raj M. Amin and Nicholas S. Andrade declare that they have no conflict of interest.

Brian J. Neuman reports grants from Depuy Synthes, outside of the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581–5.  https://doi.org/10.1016/S0140-6736(99)01312-4.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin BI, Deyo RA, Mirza SK, et al. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656.  https://doi.org/10.1001/jama.299.6.656.CrossRefPubMedGoogle Scholar
  3. 3.
    Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res. 2015;473(6):1903–12.  https://doi.org/10.1007/s11999-014-3774-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J. 2013;13(3):318–30.  https://doi.org/10.1016/j.spinee.2012.12.003.CrossRefPubMedGoogle Scholar
  5. 5.
    Kalb S, Martirosyan NL, Kalani MYS, Broc GG, Theodore N. Genetics of the degenerated intervertebral disc. World Neurosurg. 2012;77(3–4):491–501.  https://doi.org/10.1016/j.wneu.2011.07.014.CrossRefPubMedGoogle Scholar
  6. 6.
    Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3)  https://doi.org/10.1186/ar629.
  7. 7.
    Brayda-Bruno M, Tibiletti M, Ito K, et al. Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. Eur Spine J. 2014;23(SUPPL. 3):315–23.  https://doi.org/10.1007/s00586-013-2960-9.CrossRefGoogle Scholar
  8. 8.
    Colombier P, Clouet J, Hamel O, Lescaudron L, Guicheux J. The lumbar intervertebral disc: from embryonic development to degeneration. Jt Bone Spine. 2014;81(2):125–9.  https://doi.org/10.1016/j.jbspin.2013.07.012.CrossRefGoogle Scholar
  9. 9.
    Adams MA. Intervertebral disc tissues. In: Mechanical properties of aging soft tissues; 2015. p. 7–35.  https://doi.org/10.1007/978-3-319-03970-1.Google Scholar
  10. 10.
    Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013;13(3):299–317.  https://doi.org/10.1016/j.spinee.2013.01.041.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martirosyan NL, Patel AA, Carotenuto A, et al. Genetic alterations in intervertebral disc disease. Front Surg. 2016;3(November):1–15.  https://doi.org/10.3389/fsurg.2016.00059.Google Scholar
  12. 12.
    Janeczko Ł, Janeczko M, Chrzanowski R, Zieliński G. The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol Neurochir Pol. 2014;48(1):60–2.  https://doi.org/10.1016/j.pjnns.2013.04.001.PubMedGoogle Scholar
  13. 13.
    • Hoffman H, Choi AW, Chang V, et al. Aquaporin-1 expression in herniated human lumbar intervertebral discs. Glob Spine J. 2017;7(2):133–40.  https://doi.org/10.1177/2192568217694007. This new-found association between aquaporin-1 expression and radiologic findings in lumbar disc herniation provides a new avenue of investigation regarding the etiology of herniation symptoms CrossRefGoogle Scholar
  14. 14.
    Lama P, Le Maitre CL, Dolan P, Tarlton JF, Harding IJ, Adams MA. Do intervertebral discs degenerate before they herniate, or after? Bone Jt J. 2013;95 B(8):1127–33.  https://doi.org/10.1302/0301-620X.95B8.CrossRefGoogle Scholar
  15. 15.
    Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976). 2000;25(12):1477–83.  https://doi.org/10.1097/00007632-200006150-00005.CrossRefGoogle Scholar
  16. 16.
    LOTZ JC, COLLIOU OK, Chin JRJ, DUNCAN NA, Liebenberg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976). 1998;23(23):2493–506.  https://doi.org/10.1097/00007632-199812010-00004.CrossRefGoogle Scholar
  17. 17.
    • Paul CPL, de Graaf M, Bisschop A, et al. Static axial overloading primes lumbar caprine intervertebral discs for posterior herniation. PLoS One. 2017:1–23. The specific association of static axial overloading with posterior herniation provides a link between certain lifestyle behaviors and a particular herniation subtype. Behavioral changes may be able to reduce the incidence of posterior herniations.Google Scholar
  18. 18.
    Kobayashi S, Takeno K, Yayama T, Baba H. Pathomechanisms of sciatica in lumbar disc herniation effect of periradicular adhesive tissue on electrophysiological values by an intraoperative straight leg raising test. Spine (Phila Pa 1976). 2010;35(22):2004–14.CrossRefGoogle Scholar
  19. 19.
    O’Donnell J, O’Donnell A. Prostaglandin E2 content in herniated lumbar disc disease.Google Scholar
  20. 20.
    Willburger R, Wittenberg R. Prostaglandin release from lumbar disc and facet joint tissue. Spine (Phila Pa 1976). 1994;19.Google Scholar
  21. 21.
    Ohtori S, Inoue G, Eguchi Y, et al. Tumor necrosis factor-α-immunoreactive cells in nucleus pulposus in adolescent patients with lumbar disc herniation. Spine (Phila Pa 1976). 2013;38(6):459–62.  https://doi.org/10.1097/BRS.0b013e3182739cb4.CrossRefGoogle Scholar
  22. 22.
    Kraychete DC, Rioko KS, Adriana Macado I, Bacellar O, Carvalho EM. Serum cytokine levels in patients with chronic low back pain due to herniated disc: analytical cross-sectional study. Sao Paulo Med J. 2010;128(5):259–62.CrossRefPubMedGoogle Scholar
  23. 23.
    • Liu Y, Wei J, Zhao Y, Zhang Y, Han Y, Chen B. Follistatin-like protein 1 promotes inflammatory reactions in nucleus pulposus cells by interacting with the MAPK and NF κ B signaling pathways. Oncotarget. 2017. The discovered involvement of FSTL1 in the nucleus pulposus inflammatory pathway elaborates on upstream pathways that lead to COX-2 upregulation, and provides a possible avenue for the development of non-operative treatment of inflammation-related symptoms in patients. Google Scholar
  24. 24.
    • Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 2013;22(4):697–707.  https://doi.org/10.1007/s00586-013-2675-y. Improvement of lower back pain after long-term antibiotic treatment provides strong support for a role of P. acnes in symptom etiology. Moreover, it suggests another possible non-operative treatment to explore: anti-anaerobe antibiotics CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TSJ. Association between sciatica and Propionibacterium acnes. Lancet. 2001;357(9273):2024–5.  https://doi.org/10.1016/S0140-6736(00)05109-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Capoor MN, Ruzicka F, Machackova T, et al. Prevalence of Propionibacterium acnes in intervertebral discs of patients undergoing lumbar microdiscectomy: a prospective cross-sectional study. PLoS One. 2016:1–12.  https://doi.org/10.1371/journal.pone.0161676.
  27. 27.
    Aghazadeh J, Salehpour F, Ziaeii E, Javanshir N. Modic changes in the adjacent vertebrae due to disc material infection with Propionibacterium acnes in patients with lumbar disc herniation. Eur Spine J. 2016;  https://doi.org/10.1007/s00586-016-4887-4.
  28. 28.
    Chen Z, Zheng Y, Yuan Y, et al. Modic changes and disc degeneration caused by inoculation of Propionibacterium acnes inside intervertebral discs of rabbits: a pilot study. Biomed Res Int. 2016;2016.  https://doi.org/10.1155/2016/9612437.
  29. 29.
    Coscia MF, Denys GA, Wack MF. Propionibacterium acnes, coagulase-negative Staphylococcus, and the “biofilm-like” intervertebral disc. Spine (Phila Pa 1976). 2016;41(24):1860–5.  https://doi.org/10.1097/BRS.0000000000001909.CrossRefGoogle Scholar
  30. 30.
    Cuesta A, Del Valle ME, García-Suárez O, et al. Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connect Tissue Res. 2014;55(3):197–204.  https://doi.org/10.3109/03008207.2014.884083.CrossRefPubMedGoogle Scholar
  31. 31.
    • Kobayashi Y, Sekiguchi M, Konno S. Effect of an acid-sensing ion channels inhibitor on pain-related behavior by nucleus pulposus applied on the nerve root in rats. Spine (Phila Pa 1976). 2017.  https://doi.org/10.1097/BRS.0b013e318173298b. Improved pain symptoms with blockade of ASICs solidifies the role of acidity in sciatica etiology. Furthermore, ASICS may be a novel target for non-operative treatment of pain in lumbar disc herniation.
  32. 32.
    Liu J, Tao H, Wang H, et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 2017;26(12):901–11.  https://doi.org/10.1089/scd.2016.0314.CrossRefPubMedGoogle Scholar
  33. 33.
    Vroomen P, de Krom M, Wilmink J, Kester A, Knottnerus J. Diagnostic value of history and physical examination in patients suspected of lumbosacral nerve root compression. J Neurol Neurosurg Psychiatry. 2002;72(5):630–4.  https://doi.org/10.1136/jnnp.72.5.630.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vucetic N, Svennson O. Physical signs in lumbar disc hernia. Clin Orthop Relat Res. 1996.Google Scholar
  35. 35.
    Nachemson A. Disc pressure measurements. Spine (Phila Pa 1976). 1981;6(1).Google Scholar
  36. 36.
    Rainville J, Lopez E. Comparison of radicular symptoms caused by lumbar disc herniation and lumbar spinal stenosis in the elderly. Spine (Phila Pa 1976). 2013;38(15):1282–7.  https://doi.org/10.1097/BRS.0b013e31828f463e.CrossRefGoogle Scholar
  37. 37.
    Petersen T, Laslett M, Juhl C. Clinical classification in low back pain: best-evidence diagnostic rules based on systematic reviews. BMC Musculoskelet Disord. 2017;18(1):188.  https://doi.org/10.1186/s12891-017-1549-6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    • Krishnan V, Rajasekaran S, Aiyer SN. Clinical and radiological factors related to the presence of motor deficit in lumbar disc prolapse: a prospective analysis of 70 consecutive cases with neurological deficit. Eur Spine J. 2017.  https://doi.org/10.1007/s00586-017-5019-5. This is the first time that a risk profile with good sensitivity and specificity for cauda equina syndrome has been established for lumbar disc herniation patients. Those who meet criteria can be better monitored to prevent permanent motor deficit in these patients .
  39. 39.
    Kreiner DS, Hwang SW, Easa JE, et al. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J. 2014;14(1):180–91.  https://doi.org/10.1016/j.spinee.2013.08.003.CrossRefPubMedGoogle Scholar
  40. 40.
    Kim KY, Kim YT, Lee CS, Kang JS, Kim YJ. Magnetic resonance imaging in the evaluation of the lumbar herniated intervertebral disc. Int Orthop. 1993;17(4):241–4.  https://doi.org/10.1007/BF00194188.CrossRefPubMedGoogle Scholar
  41. 41.
    Messner A, Stelzeneder D, Trattnig S, et al. Does T2 mapping of the posterior annulus fibrosus indicate the presence of lumbar intervertebral disc herniation? A 3. 0 Tesla magnetic resonance study. Eur Spine J. 2017;26:877–83.  https://doi.org/10.1007/s00586-016-4873-x.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu W, Liang J, Ru N, et al. Microstructural changes in compressed nerve. Spine (Phila Pa 1976). 2016;41(11):661–6.  https://doi.org/10.1097/BRS.0000000000001354.CrossRefGoogle Scholar
  43. 43.
    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1):193–9.  https://doi.org/10.1148/radiology.166.1.3336678.CrossRefPubMedGoogle Scholar
  44. 44.
    Yu LP, Qian WW, Yin GY, Ren YX, Hu ZY. MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems. PLoS One. 2012;7(12):1–7.  https://doi.org/10.1371/journal.pone.0048074.Google Scholar
  45. 45.
    Janssen ME, Bertrand SL, Joe C, Levine MI. Lumbar herniated disk disease: comparison of MRI, myelography, and post-myelographic CT scan with surgical findings. Orthopedics. 1994;17(2):121–7. http://europepmc.org/abstract/med/8190676 PubMedGoogle Scholar
  46. 46.
    Notohamioridjo S, Stahl R, Braunagel M, et al. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation. Eur Radiol. 2016;  https://doi.org/10.1007/s00330-016-4686-7.
  47. 47.
    Gugliotta M, Costa BR, Dabis E, et al. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study. BMJ Open 2016:1–7.  https://doi.org/10.1136/bmjopen-2016-012938.
  48. 48.
    Wong J, Cote P, Sutton DA, et al. Clinical practice guidelines for the noninvasive management of low back pain: a systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Eur J Pain. 2017;21:201–16.  https://doi.org/10.1002/ejp.931.CrossRefPubMedGoogle Scholar
  49. 49.
    • Manchikanti L, Pampati V, Benyamin RM, Hirsch JA. Cost utility analysis of lumbar interlaminar epidural injections in the treatment of lumbar disc herniation, central spinal stenosis, and axial or discogenic low back pain. Pain Physician. 2017:219–228. The finding of strong QALY benefit in patients receiving intralaminar epidural injections supports the continued use of this non-operative treatment option.Google Scholar
  50. 50.
    Kepes ER, Duncalf D. Treatment of backache with spinal injections of local anesthetics, spinal and systemic steroids. A review. Pain. 1985;22(1):33–47.  https://doi.org/10.1016/0304-3959(85)90146-0.CrossRefPubMedGoogle Scholar
  51. 51.
    Carette S, Leclaire R, Marcoux S, et al. Epidural corticosteroid injections for sciatica due to herniated nucleus pulposus. N Engl J Med. 1997;336:1634–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Ackerman WE, Ahmad M. The efficacy of lumbar epidural steroid injections in patients with lumbar disc herniations. Int Anesth Res Soc. 2007;104(5):1217–22.  https://doi.org/10.1213/01.ane.0000260307.16555.7f.Google Scholar
  53. 53.
    • Altun I, Yuksel KZ. Impact of position on efficacy of caudal epidural injection for low back pain and radicular leg pain due to central spinal stenosis and lumbar disc hernia. J Korean Neurosurg Soc. 2017;60(2):205–10. Highlights benefits of performing injections in the lateral decubitus position as opposed to prone position. This provides patients with better relief at follow-up CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kim J, Hur JW, Ph D, et al. Surgery versus nerve blocks for lumbar disc herniation: quantitative analysis of radiological factors as a predictor for successful outcomes. J Korean Neurosurg Soc. 2016;59(5):478–84.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Freeman BJC, Ludbrook GL, Hall S, et al. Randomized, double-blind, placebo-controlled, trial of transforaminal epidural etanercept for the treatment of symptomatic lumbar disc herniation. Spine (Phila Pa 1976). 2013;38(23):1986–94.  https://doi.org/10.1097/01.brs.0000435140.61593.4c.CrossRefGoogle Scholar
  56. 56.
    Korhonen T, Karppinen J, Malmivaara A, et al. Efficacy of infliximab for disc herniation-induced sciatica: one-year follow-up. Spine (Phila Pa 1976). 2004;29(19):2115–9.  https://doi.org/10.1097/01.brs.0000141179.58778.6c.CrossRefGoogle Scholar
  57. 57.
    Cohen SP, Wenzell D, Hurley RW, et al. A double-blind, placebo-controlled, dose response pilot study evaluating intradiscal etanercept in patients with chronic discogenic low back pain or lumbosacral radiculopathy. Anesthesiology. 2007;107(1):99–105.  https://doi.org/10.1097/01.anes.0000267518.20363.0d.CrossRefPubMedGoogle Scholar
  58. 58.
    Shin J, Lee ÃJ, Lee ÃYJ, et al. Long-term course of alternative and integrative therapy for lumbar disc herniation and risk factors for surgery. Spine (Phila Pa 1976). 2016;41(16):955–63.  https://doi.org/10.1097/BRS.0000000000001494.CrossRefGoogle Scholar
  59. 59.
    Zhong M, Liu JT, Jiang H, Mi W, Yu P-FCL, Xue RR. Incidence of spontaneous resorption of lumbar disc herniation: a meta-analysis. Pain Physician. 2017;6:45–52.Google Scholar
  60. 60.
    Isner-Horobeti M-E, Dufour SP, Schaeffer M, et al. High-force versus low-force lumbar traction in acute lumbar sciatica due to disc herniation: a preliminary randomized trial. J Manip Physiol Ther. 2016;39(9):645–54.  https://doi.org/10.1016/j.jmpt.2016.09.006.CrossRefGoogle Scholar
  61. 61.
    Jewell DV, Riddle DL. Interventions that increase or decrease the likelihood of a meaningful improvement in physical health in patients with sciatica. Phys Ther. 2005;85(11):1139–50.PubMedGoogle Scholar
  62. 62.
    Thackeray A, Fritz J, Lurie J, Zhao W, Weinstein J. Nonsurgical treatment choices by individuals with lumbar intervertebral disc herniation in the United States: associations with long-term outcomes. Am J Phys Med Rehabil. 2016:1–8.  https://doi.org/10.1097/PHM.0000000000000685.
  63. 63.
    Wang S, Rui Y, Tan Q, Wang C. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy. Arthritis Res Ther. 2013;15.Google Scholar
  64. 64.
    Basso M, Cavagnaro L, Zanirato A, et al. What is the clinical evidence on regenerative medicine in intervertebral disc degeneration ? Musculoskelet Surg. 2017;  https://doi.org/10.1007/s12306-017-0462-3.
  65. 65.
    Levi D, Horn S, Tyszko S, Levin J, Hecht-Leavitt C, Walko E. Intradiscal platelet-rich plasma injection for chronic discogenic low back pain: preliminary results from a prospective trial. Pain Med. 2015:pnv053.  https://doi.org/10.1093/pm/pnv053.
  66. 66.
    Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R. 2016;8(1):1–10.  https://doi.org/10.1016/j.pmrj.2015.08.010.CrossRefPubMedGoogle Scholar
  67. 67.
    Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40(1):135–40.  https://doi.org/10.1007/s00264-015-2886-4.CrossRefPubMedGoogle Scholar
  68. 68.
    Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation. JAMA. 2006;296(20):2441.  https://doi.org/10.1001/jama.296.20.2441.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Atlas SJ, Deyo RA, Keller RB, Chapin AM, Patrick DL, Long JM, et al. The Maine lumbar spine study part II: 1-year outcomes of surgical and non-surgical management of sciatica. Spine (Phila Pa 1976). 1996;21(15):1777–86.  https://doi.org/10.1097/00007632-199608010-00011.CrossRefGoogle Scholar
  70. 70.
    Osterman H, Seitsalo S, Karppinen J, Malmivaara A. Effectiveness of microdiscectomy for lumbar disc herniation. Spine (Phila Pa 1976). 2006;31(21):2409–14.CrossRefGoogle Scholar
  71. 71.
    Ademi Z, Gloy V, Glinz D, et al. Cost-effectiveness of primarily surgical versus primarily conservative treatment of acute and subacute radiculopathies due to intervertebral disc herniation from the Swiss perspective. Swiss Med Wkly. 2016:1–14.  https://doi.org/10.4414/smw.2016.14382.
  72. 72.
    • Oba H, Takahashi J, Tsutsumimoto T, et al. Predictors of improvement in low back pain after lumbar decompression surgery: prospective study of 140 patients. J Orthop Sci. 2017:6–11.  https://doi.org/10.1016/j.jos.2017.03.011. The identification of pre-operative factors that are associated with improved discectomy outcomes may aid in selecting patients who are most likely to improve from surgical intervention.
  73. 73.
    Tschugg A, Lener S, Hartmann S, et al. Preoperative sport improves the outcome of lumbar disc surgery: a prospective monocentric cohort study. Neurosurg Rev. 2017;  https://doi.org/10.1007/s10143-017-0811-6.
  74. 74.
    Wilson CA, Roffey DM, Chow D, Alkherayf F, Wai EK. A systematic review of preoperative predictors for postoperative clinical outcomes following lumbar discectomy. Spine J. 2016;16(11):1413–22.  https://doi.org/10.1016/j.spinee.2016.08.003.CrossRefPubMedGoogle Scholar
  75. 75.
    Hsu HT, Chang SJ, Yang SS, Chai CL. Learning curve of full-endoscopic lumbar discectomy. Eur Spine J. 2013;22(4):727–33.  https://doi.org/10.1007/s00586-012-2540-4.CrossRefPubMedGoogle Scholar
  76. 76.
    Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY. A comparison of acute hospital charges after tubular versus open microdiskectomy. World Neurosurg. 2013;80(1–2):208–12.  https://doi.org/10.1016/j.wneu.2012.08.015.CrossRefPubMedGoogle Scholar
  77. 77.
    Bai J, Zhang W, Wang Y, et al. Application of transiliac approach to intervertebral endoscopic discectomy in L5/S1 intervertebral disc herniation. Eur J Med Res. 2017;22(14):4–13.  https://doi.org/10.1186/s40001-017-0254-0.Google Scholar
  78. 78.
    Tonosu J, Oshima Y, Shiboi R, Hayashi A, Takano Y, Koga H. Consideration of proper operative route for interlaminar approach for percutaneous endoscopic lumbar discectomy. J Spine Surg. 2016;2(4):281–8.  10.21037/jss.2016.11.05.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Phan K, Xu J, Schultz K, et al. Full-endoscopic versus micro-endoscopic and open discectomy: a systematic review and meta-analysis of outcomes and complications. Clin Neurol Neurosurg. 2017;154:1–12.  https://doi.org/10.1016/j.clineuro.2017.01.003.CrossRefPubMedGoogle Scholar
  80. 80.
    Overdevest G, Peul WC, Brand R, et al. Tubular discectomy versus conventional microdiscectomy for the treatment of lumbar disc herniation: Two year results of a double-blinded randomised trial. Acta Neurochir. 2010;152(4):747.  https://doi.org/10.1136/jnnp-2016-315306.Google Scholar
  81. 81.
    Choi K, Lee DC, Shim H, Shin S, Park C. A strategy of percutaneous endoscopic lumbar discectomy for migrated disc herniation. World Neurosurg. 2017;99:259–66.  https://doi.org/10.1016/j.wneu.2016.12.052.CrossRefPubMedGoogle Scholar
  82. 82.
    Soman SM, Modi JV, Chokshi J. Feasibility of endoscopic discectomy by inter laminar approach at a high volume tertiary public hospital in a developing country. J Spine Surg. 2017;3(1):38–43.  https://doi.org/10.21037/jss.2017.03.10.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Li Z, Hou S, Shang W, Song K, Zhao H. Modified percutaneous lumbar foraminoplasty and percutaneous endoscopic lumbar discectomy: instrument design, technique notes, and 5 years follow-up. Pain Physician. 2017;20:85–98.Google Scholar
  84. 84.
    • Tu Z, Li YW, Wang B, et al. Clinical outcome of full-endoscopic interlaminar discectomy for single-level lumbar disc herniation: a minimum of 5-year follow-up. Pain Physician. 2017;(3):425–430. Demonstrates good outcomes for interlaminar discectomy conducted entirely endoscopically. There is high potential for successfully minimally invasive surgery for single-level disc herniation. Google Scholar
  85. 85.
    Eun SS, Lee SH, Sabal LA. Long-term follow-up results of percutaneous endoscopic lumbar discectomy. Pain Physician. 2016;19:1161–6.Google Scholar
  86. 86.
    Yao Y, Liu H, Zhang H, et al. Risk factors for recurrent herniation after percutaneous endoscopic lumbar discectomy. World Neurosurg. 2017;100:1–6.  https://doi.org/10.1016/j.wneu.2016.12.089.CrossRefPubMedGoogle Scholar
  87. 87.
    Hu Z, Li X, Cui J, et al. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: a study of 40 cases. Int J Surg. 2017;41:97–103.  https://doi.org/10.1016/j.ijsu.2017.03.059.CrossRefPubMedGoogle Scholar
  88. 88.
    Choi K, Kim J, Lee C. Outcome of decompression alone for foraminal/extraforaminal entrapment of L5 nerve root through Wiltse paraspinal approach. Clin Spine Surg. 2016:1–7.Google Scholar
  89. 89.
    Wiltse L, Spencer C. New uses and refinements of the paraspinal approach to the lumbar spine. Spine (Phila Pa 1976). 1988;13(6).Google Scholar
  90. 90.
    Habiba S, Nygaard ØP, Brox JI, Hellum C, Austevoll IM, Solberg TK. Risk factors for surgical site infections among 1,772 patients operated on for lumbar disc herniation: a multicentre observational registry-based study. Spine (Phila Pa 1976). 2017;  https://doi.org/10.1007/s00701-017-3184-2.
  91. 91.
    Seavey JG, Balazs GC, Steelman T, Gwinn DE, Wagner SC. The effect of preoperative lumbar epidural corticosteroid injection on post-operative infection rate in patients undergoing single-level lumbar decompression. Spine J. 2017;  https://doi.org/10.1016/j.spinee.2017.04.003.
  92. 92.
    Kotil K. Closed drainage versus non-drainage for single-level lumbar disc surgery: relationship between epidural hematoma and fibrosis. Asian Spine J. 2016;10(6):1072–8.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Murphy ME, Hakim JS, Kerezoudis P, et al. Micro vs. macrodiscectomy: does use of the microscope reduce complication rates? Clin Neurol Neurosurg. 2017;152:28–33.  https://doi.org/10.1016/j.clineuro.2016.11.010.CrossRefPubMedGoogle Scholar
  94. 94.
    Puvanesarajah V, Hassanzadeh H. The true cost of a dural tear. Spine (Phila Pa 1976). 2017;42(10):770–6.  https://doi.org/10.1097/BRS.0000000000001895.CrossRefGoogle Scholar
  95. 95.
    Shin B-J. Risk factors for recurrent lumbar disc herniations. Asian Spine J. 2014;8(2).Google Scholar
  96. 96.
    Huang W, Han Z, Liu J, Yu L, Yu X. Risk factors for recurrent lumbar disc herniation. Medicine (Baltimore). 2016;95(2):1–10.  https://doi.org/10.1097/MD.0000000000002378.Google Scholar
  97. 97.
    Cinotti G, Roysam GS, Eisenstein SM, Postacchini F. Ipsilateral recurrent lumbar disc herniation. A prospective, controlled study. J Bone Jt Surg. 1993;80-B:825–32.Google Scholar
  98. 98.
    Kim K, Park S, Kim Y. Disc height and segmental motion as risk factors for recurrent lumbar disc herniation. Spine (Phila Pa 1976). 2009;34(24):2674–8.CrossRefGoogle Scholar
  99. 99.
    Belykh E, Krutko AV, Baykov ES, Giers MB, Preul MC, Byvaltsev VA. Preoperative estimation of disc herniation recurrence after microdiscectomy: predictive value of a multivariate model based on radiographic parameters. Spine J. 2017;17(3):390–400.  https://doi.org/10.1016/j.spinee.2016.10.011.CrossRefPubMedGoogle Scholar
  100. 100.
    Hegarty D, Shorten G. Multivariate prognostic modeling of persistent pain following lumbar discectomy. Pain Physician. 2012;15(5):421.PubMedGoogle Scholar
  101. 101.
    Carragee EJ, Han MY, Yang B, Kim DH, Kraemer H, Billys J. Activity restrictions after posterior lumbar discectomy: a prospective study of outcomes in 152 cases with no postoperative restrictions. Spine (Phila Pa 1976). 1999;24(22):2346–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Raj M. Amin
    • 1
  • Nicholas S. Andrade
    • 2
  • Brian J. Neuman
    • 1
    • 3
    Email author
  1. 1.Department of Orthopaedic SurgeryJohns Hopkins HospitalBaltimoreUSA
  2. 2.Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Johns Hopkins Orthopaedic and Spine SurgeryBaltimoreUSA

Personalised recommendations