Update on stress fractures in female athletes: epidemiology, treatment, and prevention

  • Yin-Ting Chen
  • Adam S. Tenforde
  • Michael FredericsonEmail author
Women's Issues (MA Goolsby, Section editor)


Stress fractures are a common type of overuse injury in athletes. Females have unique risk factors such as the female athlete triad that contribute to stress fracture injuries. We review the current literature on risk factors for stress fractures, including the role of sports participation and nutrition factors. Discussion of the management of stress fractures is focused on radiographic criteria and anatomic location and how these contribute to return to play guidelines. We outline the current recommendations for evaluating and treatment of female athlete triad. Technologies that may aid in recovery from a stress fracture including use of anti-gravity treadmills are discussed. Prevention strategies may include early screening of female athlete triad, promoting early participation in activities that improve bone health, nutritional strategies, gait modification, and orthotics.


Stress fracture Bone mineral density Return to play Female athlete triad Vitamin D 


Conflict of Interest

Yin-Ting Chen declares that he has no conflict of interest. Adam S. Tenforde declares that he has no conflict of interest. Michael Fredericson declares that he has no conflict of interest.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Fredericson M, Jennings F, Beaulieu C, Matheson GO. Stress fractures in athletes. Topics in magnetic resonance imaging. TMRI. 2006;17:309–25. doi: 10.1097/RMR.0b013e3180421c8c.PubMedGoogle Scholar
  2. 2.
    Schnackenburg KE, Macdonald HM, Ferber R, Wiley JP, Boyd SK. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc. 2011;43:2110–9. doi: 10.1249/MSS.0b013e31821f8634.PubMedCrossRefGoogle Scholar
  3. 3.
    Wentz L, Liu PY, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176:420–30.PubMedGoogle Scholar
  4. 4.
    Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39:1867–82. doi: 10.1249/mss.0b013e318149f111.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoch AZ, Pajewski NM, Moraski L, Carrera GF, Wilson CR, Hoffmann RG, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19:421–8. doi: 10.1097/JSM.0b013e3181b8c13600042752-200909000-00013.PubMedCrossRefGoogle Scholar
  6. 6.
    Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160:137–42. doi: 10.1001/archpedi.160.2.137.PubMedCrossRefGoogle Scholar
  7. 7.
    Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45:243–52. doi: 10.4085/1062-6050-45.3.243.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoch AZ, Papanek P, Szabo A, Widlansky ME, Schimke JE, Gutterman DD. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21:119–25. doi: 10.1097/JSM.0b013e3182042a9a.PubMedCrossRefGoogle Scholar
  9. 9.
    • Field AE, Gordon CM, Pierce LM, Ramappa A, Kocher MS. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch Pediatr Adolesc Med. 2011;165:723–8. doi: 10.1001/archpediatrics.2011.34. Findings from this prospective observational cohort study are that engaging in high-impact sports (particularly running, basketball, and cheerleading/gymnastics) increases stress fracture risk in pre-adolescent and adolescent girls. Authors suggest that pre-adolescent and adolescent girls may benefit by having non- and moderate-impact activities replace some of the hours spent in high-impact activities in order to reduce cumulative impact and stress fracture risk.PubMedCrossRefGoogle Scholar
  10. 10.
    • Sonneville KR, Gordon CM, Kocher MS, Pierce LM, Ramappa A, Field AE. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012. doi: 10.1001/archpediatrics.2012.5. The prospective observational cohort study results support higher vitamin D intake and not calcium or dairy as protective against development of a stress fracture in young female athletes, particularly for those who engage in high impact sports for greater duration each week. This study suggests relatively greater importance of vitamin D over calcium or dairy intake for fracture prevention in young female athletes.
  11. 11.
    Kaeding CC, Najarian RG. Stress fractures: classification and management. Phys Sportsmed. 2010;38:45–54. doi: 10.3810/psm.2010.10.1807.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller T, Kaeding CC, Flanigan D. The classification systems of stress fractures: a systematic review. Phys Sportsmed. 2011;39:93–100. doi: 10.3810/psm.2011.02.1866.PubMedCrossRefGoogle Scholar
  13. 13.
    Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23:472–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Moran DS, Evans RK, Hadad E. Imaging of lower extremity stress fracture injuries. Sports Med. 2008;38:345–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Romani WA, Perrin DH, Dussault RG, Ball DW, Kahler DM. Identification of tibial stress fractures using therapeutic continuous ultrasound. J Orthop Sports Phys Ther. 2000;30:444–52.PubMedGoogle Scholar
  16. 16.
    Papalada A, Malliaropoulos N, Tsitas K, Kiritsi O, Padhiar N, Del Buono A, et al. Ultrasound as a primary evaluation tool of bone stress injuries in elite track and field athletes. Am J Sports Med. 2012;40:915–9. doi: 10.1177/0363546512437334.PubMedCrossRefGoogle Scholar
  17. 17.
    Schneiders AG, Sullivan SJ, Hendrick PA, Hones BD, McMaster AR, Sugden BA, et al. The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2012;42:760–71. doi: 10.2519/jospt.2012.4000.PubMedGoogle Scholar
  18. 18.
    Andrish JT. The leg. Orthopedic sports medicine: principle and practice. Philadelphia: WB Saunders; 1994.Google Scholar
  19. 19.
    Ziltener JL, Leal S, Fournier PE. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med. 2010;53(278–82):82–8. doi: 10.1016/ Scholar
  20. 20.
    Rome K, Handoll HH, Ashford R. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2005;(2):CD000450. doi: 10.1002/14651858.CD000450.pub2.
  21. 21.
    Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8:344–53.PubMedGoogle Scholar
  22. 22.
    Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36:545–53. doi: 10.1177/0363546507310076.PubMedCrossRefGoogle Scholar
  23. 23.
    Arendt E, Agel J, Heikes C, Griffiths H. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med. 2003;31:959–68.PubMedGoogle Scholar
  24. 24.
    • Dobrindt O, Hoffmeyer B, Ruf J, Seidensticker M, Steffen IG, Fischbach F, et al. Estimation of return-to-sports-time for athletes with stress fracture - an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet Disord. 2012;13:139. doi: 10.1186/1471-2474-13-139. The return-to-sports-time (RTST) after stress fractures can be prognosticated based on the MRI grading and the risk level of the stress fractures. Management plan can be formulated at the time of diagnosis, and stress fractures at high-risk sites need to be managed diligently, regardless of their grade. PubMedCrossRefGoogle Scholar
  25. 25.
    Deimel JF, Dunlap BJ. The female athlete triad. Clin Sports Med. 2012;31:247–54. doi: 10.1016/j.csm.2011.09.007.PubMedCrossRefGoogle Scholar
  26. 26.
    Ducher G, Turner AI, Kukuljan S, Pantano KJ, Carlson JL, Williams NI, et al. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med. 2011;41:587–607. doi: 10.2165/11588770-000000000-00000.PubMedCrossRefGoogle Scholar
  27. 27.
    Feingold D, Hame SL. Female athlete triad and stress fractures. Orthop Clin North Am. 2006;37:575–83. doi: 10.1016/j.ocl.2006.09.005.PubMedCrossRefGoogle Scholar
  28. 28.
    Braam LA, Knapen MH, Geusens P, Brouns F, Vermeer C. Factors affecting bone loss in female endurance athletes: a 2-year follow-up study. Am J Sports Med. 2003;31:889–95.PubMedGoogle Scholar
  29. 29.
    Castelo-Branco C, Vicente JJ, Pons F, Martinez de Osaba MJ, Casals E, Vanrell JA. Bone mineral density in young, hypothalamic oligoamenorrheic women treated with oral contraceptives. J Reprod Med. 2001;46:875–9.PubMedGoogle Scholar
  30. 30.
    Gibson JH, Mitchell A, Reeve J, Harries MG. Treatment of reduced bone mineral density in athletic amenorrhea: a pilot study. Osteoporos Int. 1999;10:284–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Hergenroeder AC, Smith EO, Shypailo R, Jones LA, Klish WJ, Ellis K. Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am J Obstet Gynecol. 1997;176:1017–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Rickenlund A, Carlstrom K, Ekblom B, Brismar TB, Von Schoultz B, Hirschberg AL. Effects of oral contraceptives on body composition and physical performance in female athletes. J Clinic Endocrinol Metabol. 2004;89:4364–70. doi: 10.1210/jc.2003-031334.CrossRefGoogle Scholar
  33. 33.
    Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril. 2003;80:398–404.PubMedCrossRefGoogle Scholar
  34. 34.
    Joy E. Is the pill the answer for patients with the female athlete triad? Curr Sports Med Rep. 2012;11:54–5. doi: 10.1249/JSR.0b013e3182499e86.PubMedGoogle Scholar
  35. 35.
    Hartard M, Kleinmond C, Kirchbichler A, Jeschke D, Wiseman M, Weissenbacher ER, et al. Age at first oral contraceptive use as a major determinant of vertebral bone mass in female endurance athletes. Bone. 2004;35:836–41. doi: 10.1016/j.bone.2004.05.017.PubMedCrossRefGoogle Scholar
  36. 36.
    Barrack MT, Van Loan MD, Rauh MJ, Nichols JF. Body mass, training, menses, and bone in adolescent runners: a 3-yr follow-up. Med Sci Sports Exerc. 2011;43:959–66. doi: 10.1249/MSS.0b013e318201d7bb.PubMedCrossRefGoogle Scholar
  37. 37.
    Grabowski AM, Kram R. Effects of velocity and weight support on ground reaction forces and metabolic power during running. J Appl Biomech. 2008;24:288–97.PubMedGoogle Scholar
  38. 38.
    Grabowski AM. Metabolic and biomechanical effects of velocity and weight support using a lower-body positive pressure device during walking. Arch Phys Med Rehabil. 2010;91:951–7. doi: 10.1016/j.apmr.2010.02.007.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoffman MD, Donaghe HE. Physiological responses to body weight–supported treadmill exercise in healthy adults. Arch Phys Med Rehabil. 2011;92:960–6. doi: 10.1016/j.apmr.2010.12.035.PubMedCrossRefGoogle Scholar
  40. 40.
    Moore MN, Vandenakker-Albanese C, Hoffman MD. Use of partial body-weight support for aggressive return to running after lumbar disk herniation: a case report. Arch Phys Med Rehabil. 2010;91:803–5. doi: 10.1016/j.apmr.2010.01.014.PubMedCrossRefGoogle Scholar
  41. 41.
    Saxena A, Granot A. Use of an anti-gravity treadmill in the rehabilitation of the operated achilles tendon: a pilot study. J Foot Ankle Surg. 2011;50:558–61. doi: 10.1053/j.jfas.2011.04.045.PubMedCrossRefGoogle Scholar
  42. 42.
    Tenforde AS, Watanabe LM, Moreno TJ, Fredericson M. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury. PM R. 2012;4:629–31. doi: 10.1016/j.pmrj.2012.02.003.PubMedCrossRefGoogle Scholar
  43. 43.
    Rue JP, Armstrong 3rd DW, Frassica FJ, Deafenbaugh M, Wilckens JH. The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics. 2004;27:1192–5.PubMedGoogle Scholar
  44. 44.
    Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35:1188–92. doi: 10.1177/0363546506297540.PubMedCrossRefGoogle Scholar
  45. 45.
    Griffin XL, Smith N, Parsons N, Costa ML. Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev. 2012;2:CD008579. doi: 10.1002/14651858.CD008579.pub2.PubMedGoogle Scholar
  46. 46.
    Hartig M, Joos U, Wiesmann HP. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J. 2000;29:499–506.PubMedCrossRefGoogle Scholar
  47. 47.
    Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg [Am]. 1994;76:820–6.Google Scholar
  48. 48.
    Simmons Jr JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.PubMedGoogle Scholar
  49. 49.
    Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomized, double-blind trial. Injury. 2003;34:357–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Griffin XL, Costa ML, Parsons N, Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011;(4):CD008471. doi: 10.1002/14651858.CD008471.pub2.
  51. 51.
    Thein-Nissenbaum JM, Carr KE. Female athlete triad syndrome in the high school athlete. Phys Ther Sport. 2011;12:108–16. doi: 10.1016/j.ptsp.2011.04.002.PubMedCrossRefGoogle Scholar
  52. 52.
    Mencias T, Noon M, Hoch AZ. Female athlete triad screening in National Collegiate Athletic Association Division I athletes: is the preparticipation evaluation form effective? Clin J Sport Med. 2012;22:122–5. doi: 10.1097/JSM.0b013e3182425aee.PubMedCrossRefGoogle Scholar
  53. 53.
    Mountjoy M, Hutchinson M, Cruz L, Lebrun C. Female athlete triad coalition position stand on female athlete triad pre participation evaluation. 2008.Google Scholar
  54. 54.
    Pollock N, Grogan C, Perry M, Pedlar C, Cooke K, Morrissey D, et al. Bone-mineral density and other features of the female athlete triad in elite endurance runners: a longitudinal and cross-sectional observational study. Int J Sport Nutr Exerc Metab. 2010;20:418–26.PubMedGoogle Scholar
  55. 55.
    Bachrach LK, Sills IN. Clinical report-bone densitometry in children and adolescents. Pediatrics. 2011;127:189–94. doi: 10.1542/peds.2010-2961.PubMedCrossRefGoogle Scholar
  56. 56.
    Patel DS, Roth M, Kapil N. Stress fractures: diagnosis, treatment, and prevention. Am Fam Physcian. 2011;83:39–46.Google Scholar
  57. 57.
    Wentz L, Liu PY, Ilich JZ, Haymes EM. Dietary and training predictors of stress fractures in female runners. Int J Sport Nutr Exerc Metab. 2012;22:374–82.Google Scholar
  58. 58.
    Cowan DN, Bedno SA, Urban N, Lee DS, Niebuhr DW. Step test performance and risk of stress fractures among female army trainees. Am J Prev Med. 2012;42:620–4. doi: 10.1016/j.amepre.2012.02.014.PubMedCrossRefGoogle Scholar
  59. 59.
    Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011;3:861–7. doi: 10.1016/j.pmrj.2011.05.019.PubMedCrossRefGoogle Scholar
  60. 60.
    Milgrom C, Simkin A, Eldad A, Nyska M, Finestone A. Using bone's adaptation ability to lower the incidence of stress fractures. Am J Sports Med. 2000;28:245–51.PubMedGoogle Scholar
  61. 61.
    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case–control analysis of 2002 running injuries. Br J Sports Med. 2002;36:95–101.PubMedCrossRefGoogle Scholar
  62. 62.
    Davis I, Milner CE, Hamill J. Does increased loading during running lead to tibial stress fractures? A prospective study. Med Sci Sports Exerc. 2004;36(5 Suppl):S58.Google Scholar
  63. 63.
    Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38:323–8. doi: 10.1249/01.mss.0000183477.75808.92.PubMedCrossRefGoogle Scholar
  64. 64.
    Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26:23–8. doi: 10.1016/j.clinbiomech.2010.08.005.CrossRefGoogle Scholar
  65. 65.
    Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D'Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot vs shod runners. Nature. 2010;463:531–5. doi: 10.1038/nature08723.PubMedCrossRefGoogle Scholar
  66. 66.
    Milner CE, Hamill J, Davis I. Are knee mechanics during early stance related to tibial stress fracture in runners? Clin Biomech. 2007;22:697–703. doi: 10.1016/j.clinbiomech.2007.03.003.CrossRefGoogle Scholar
  67. 67.
    Milner CE, Hamill J, Davis IS. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. J Orthop Sports Phys Ther. 2010;40:59–66. doi: 10.2519/jospt.2010.3024.PubMedGoogle Scholar
  68. 68.
    Crowell HP, Milner CE, Hamill J, Davis IS. Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther. 2010;40:206–13. doi: 10.2519/jospt.2010.3166.PubMedGoogle Scholar
  69. 69.
    Crowell HP, Davis IS. Gait retraining to reduce lower extremity loading in runners. Clin Biomech. 2011;26:78–83. doi: 10.1016/j.clinbiomech.2010.09.003.CrossRefGoogle Scholar
  70. 70.
    Hobara H, Sato T, Sakaguchi M, Sato T, Nakazawa K. Step frequency and lower extremity loading during running. Int J Sports Med. 2012;33:310–3. doi: 10.1055/s-0031-1291232.PubMedCrossRefGoogle Scholar
  71. 71.
    Jenkins DW, Cauthon DJ. Barefoot running claims and controversies: a review of the literature. J Am Podiatr Med Assoc. 2011;101:231–46.PubMedGoogle Scholar
  72. 72.
    Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23:741–9. doi: 10.1359/jbmr.080102.PubMedCrossRefGoogle Scholar
  73. 73.
    Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2010;2:740–50. doi: 10.1016/j.pmrj.2010.04.020. quiz 94.PubMedCrossRefGoogle Scholar
  74. 74.
    Givon U, Friedman E, Reiner A, Vered I, Finestone A, Shemer J. Stress fractures in the Israeli defense forces from 1995 to 1996. Clin Orthopaed Relat Res. 2000;373:227–32.CrossRefGoogle Scholar
  75. 75.
    Ruohola JP, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21:1483–8. doi: 10.1359/jbmr.060607.PubMedCrossRefGoogle Scholar
  76. 76.
    Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H, et al. Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone. 2005;37:267–73. doi: 10.1016/j.bone.2005.04.016.PubMedCrossRefGoogle Scholar
  77. 77.
    Constantini NW, Arieli R, Chodick G, Dubnov-Raz G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20:368–71. doi: 10.1097/JSM.0b013e3181f207f2.PubMedCrossRefGoogle Scholar
  78. 78.
    Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep. 2010;9:220–6. doi: 10.1249/JSR.0b013e3181e7dd45.PubMedGoogle Scholar
  79. 79.
    Tangpricha V, Pearce EN, Chen TC, Holick MF. Vitamin D insufficiency among free-living healthy young adults. Am J Med. 2002;112:659–62.PubMedCrossRefGoogle Scholar
  80. 80.
    Tenforde AS, Sayres LC, Sainani KL, Fredericson M. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete: a review of the literature. PM R. 2010;2:945–9. doi: 10.1016/j.pmrj.2010.05.006.PubMedCrossRefGoogle Scholar
  81. 81.
    McCabe MP, Smyth MP, Richardson DR. Current concept review: vitamin D and stress fractures. Foot Ankle Int. 2012;33:526–33. doi: 10.3113/FAI.2012.0526.PubMedCrossRefGoogle Scholar
  82. 82.
    The National Institutes of Health: strengthening knowledge and understanding of dietary supplements: vitamin D. Accessed November 26, 2012.
  83. 83.
    Gillespie WJ, Grant I. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2000:CD000450. doi: 10.1002/14651858.CD000450.
  84. 84.
    Baxter ML, Baycroft C, Baxter GD. Lower limb injuries in soldiers: feasibility of reduction through implementation of a novel orthotic screening protocol. Milit Med. 2011;176:291–6.Google Scholar
  85. 85.
    Mattila VM, Sillanpaa PJ, Salo T, Laine HJ, Maenpaa H, Pihlajamaki H. Can orthotic insoles prevent lower limb overuse injuries? A randomized-controlled trial of 228 subjects. Scand J Med Sci Sports. 2011;21:804–8. doi: 10.1111/j.1600-0838.2010.01116.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yin-Ting Chen
    • 1
  • Adam S. Tenforde
    • 1
  • Michael Fredericson
    • 1
    Email author
  1. 1.Department of Orthopaedic Surgery, Division of Physical Medicine and RehabilitationStanford UniversityRedwood CityUSA

Personalised recommendations