Current Cardiovascular Risk Reports

, Volume 7, Issue 3, pp 183–189 | Cite as

Pregnancy Complications and Later Development of Hypertension

Women and Heart Disease (J Robinson, Section Editor)

Abstract

Pregnancy complications such as preeclampsia and diabetes affect approximately 5 to 10 % of all pregnancies and compromise maternal and fetal health during gestation. Complications during pregnancy may also contribute to the development of hypertension and future cardiovascular risk in the mother. Moreover, fetal exposure to hypertension and diabetes during pregnancy can program hypertension and cardiovascular disease in the offspring. Transgenerational transmission of programmed cardiovascular risk highlights the importance of understanding the mechanisms that link complications during pregnancy with later hypertension in her offspring and subsequent generations. However, experimental studies are needed to investigate the cause and effect of increased blood pressure in the mother following a complicated pregnancy and provide insight into the development of preventative measures that may improve the long-term cardiovascular health of women and their offspring.

Keywords

Pregnancy complications Hypertension Preeclampsia Diabetes Fetal programming Transgenerational 

References

  1. 1.
    Chang J, Streitman D. Physiologic adaptations to pregnancy. Neurol Clin. 2012;30(3):781–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Cunningham FG, Gant NF, Leveno KJ, et al. Diabetes. In: Cunningham FG, Gant NF, Leveno KJ, et al., editors. Williams obstetrics. 21st ed. New York, NY: McGraw-Hill; 2001. p. 1359–81.Google Scholar
  3. 3.
    George EM, Granger JP. Mechanisms and potential therapies for preeclampsia. Curr Hypertens Rep. 2011;13(4):269–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Fraser A, Nelson SM, Macdonald-Wallis C, Cherry L, Butler E, Sattar N, et al. Associations of pregnancy complications with calculated cardiovascular disease risk and cardiovascular risk factors in middle age: the Avon Longitudinal Study of Parents and Children. Circulation. 2012;125(11):1367–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.PubMedCrossRefGoogle Scholar
  6. 6.
    ACOG Practice Bulletin, Clinical Management Guidelines for Obstetrician-Gynecologists, Number 33, January 2002.Google Scholar
  7. 7.
    Wagner SJ, Barac S, Garovic VD. Hypertensive pregnancy disorders: current concepts. J Clin Hypertens (Greenwich). 2007;9(7):560–6.CrossRefGoogle Scholar
  8. 8.
    Salihu HM, De La Cruz C, Rahman S, August EM. Does maternal obesity cause preeclampsia? A systematic review of the evidence. Minerva Ginecol. 2012;64(4):259–80.PubMedGoogle Scholar
  9. 9.
    American Diabetes Association. Diagnosis and classification of diabetes mellitis. Diabetes Care. 2006;29:s43–8.Google Scholar
  10. 10.
    Mongraw-Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension. 2010;56(1):166–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Magnussen EB, Vatten LJ, Smith GD, Romundstad PR. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114(5):961–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Mangos GJ, Spaan JJ, Pirabhahar S, Brown MA. Markers of cardiovascular disease risk after hypertension in pregnancy. J Hypertens. 2012;30(2):351–8.PubMedCrossRefGoogle Scholar
  13. 13.
    McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008;156(5):918–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Rodie VA, Freeman DJ, Sattar N, Greer IA. Pre-eclampsia and cardiovascular disease: metabolic syndrome of pregnancy? Atherosclerosis. 2004;175(2):189–202.PubMedCrossRefGoogle Scholar
  15. 15.
    Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension. 2012;60(2):437–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Meyers-Seifer CH, Vohr BR. Lipid levels in former gestational diabetic mothers. Diabetes Care. 1996;19(12):1351–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Freibert SM, Mannino DM, Bush H, Crofford LJ. The association of adverse pregnancy events and cardiovascular disease in women 50 years of age and older. J Women Health (Larchmt). 2011;20(2):287–93.CrossRefGoogle Scholar
  18. 18.
    Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation. 2010;122(6):579–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Saxena AR, Karumanchi SA, Brown NJ, Royle CM, McElrath TF, Seely EW. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy. Hypertension. 2010;55(5):1239–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Noori M, Donald AE, Angelakopoulou A, Hingorani AD, Williams DJ. Prospective study of placental angiogenic factors and maternal vascular function before and after preeclampsia and gestational hypertension. Circulation. 2010;122(5):478–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Canti IC, Komlos M, Martins-Costa SH, Ramos JG, Capp E, Corleta H. Risk factors for cardiovascular disease ten years after preeclampsia. Sao Paulo Med J. 2010;128(1):10–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Drost JT, Arpaci G, Ottervanger JP, de Boer MJ, van Eyck J, van der Schouw YT, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19(5):1138–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Marin R, Gorostidi M, Portal CG, Sanchez M, Sanchez E, Alvarez J. Long-term prognosis of hypertension in pregnancy. Hypertens Pregnancy. 2000;19(2):199–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Sattar N, Ramsay J, Crawford L, Cheyne H, Greer IA. Classic and novel risk factor parameters in women with a history of preeclampsia. Hypertension. 2003;42(1):39–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamad RR, Eriksson MJ, Silveira A, Hamsten A, Bremme K. Decreased flow-mediated dilation is present 1 year after a pre-eclamptic pregnancy. J Hypertens. 2007;25(11):2301–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Evans CS, Gooch L, Flotta D, Lykins D, Powers RW, Landsittel D, et al. Cardiovascular system during the postpartum state in women with a history of preeclampsia. Hypertension. 2011;58(1):57–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Yinon Y, Kingdom JC, Odutayo A, Moineddin R, Drewlo S, Lai V, et al. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk. Circulation. 2010;122(18):1846–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Kvehaugen AS, Dechend R, Ramstad HB, Troisi R, Fugelseth D, Staff AC. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension. 2011;58(1):63–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaugler-Senden IP, Tamsma JT, van der Bent C, Kusters R, Steegers EA, de Groot CJ. Angiogenic factors in women ten years after severe very early onset preeclampsia. PLoS One. 2012;7(8):e43637.PubMedCrossRefGoogle Scholar
  32. 32.
    Lopez-Ruiz A, Sartori-Valinotti J, Yanes LL, Iliescu R, Reckelhoff JF. Sex differences in control of blood pressure: role of oxidative stress in hypertension in females. Am J Physiol Heart Circ Physiol. 2008;295(2):H466–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Tosun M, Celik H, Avci B, Yavuz E, Alper T, Malatyalioglu E. Maternal and umbilical serum levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in normal pregnancies and in pregnancies complicated by preeclampsia. J Matern Fetal Neonatal Med. 2010;23(8):880–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Alexander BT, Cockrell KL, Massey MB, Bennett WA, Granger JP. Tumor necrosis factor-alpha-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am J Hypertens. 2002;15(2 Pt 1):170–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Vitoratos N, Economou E, Iavazzo C, Panoulis K, Creatsas G. Maternal serum levels of TNF-alpha and IL-6 long after delivery in preeclamptic and normotensive pregnant women. Mediators Inflamm. 2010;2010:908649.PubMedCrossRefGoogle Scholar
  36. 36.
    LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9(6):480–5.PubMedCrossRefGoogle Scholar
  37. 37.
    DiBona GF. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens. 2002;11(2):197–200.PubMedCrossRefGoogle Scholar
  38. 38.
    Crowley SD, Coffman TM. Recent advances involving the renin-angiotensin system. Exp Cell Res. 2012;318(9):1049–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Collen AC, Manhem K, Sverrisdottir YB. Sympathetic nerve activity in women 40 years after a hypertensive pregnancy. J Hypertens. 2012;30(6):1203–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103(7):945–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Hubel CA, Wallukat G, Wolf M, Herse F, Rajakumar A, Roberts JM, et al. Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension. 2007;49(3):612–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Choudhury M, Friedman JE. Epigenetics and microRNAs in preeclampsia. Clin Exp Hypertens. 2012;34(5):334–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Weinhold B. Epigenetics: the science of change. Environ Health Perspect. 2006;114(3):A160–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30(2):79–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Mousa AA, Archer KJ, Cappello R, Estrada-Gutierrez G, Isaacs CR, Strauss 3rd JF, et al. DNA methylation is altered in maternal blood vessels of women with preeclampsia. Reprod Sci. 2012;19(12):1332–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Sullivan SD, Umans JG, Ratner R. Gestational diabetes: implications for cardiovascular health. Curr Diab Rep. 2012;12(1):43–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Reriani MK, Lerman LO, Lerman A. Endothelial function as a functional expression of cardiovascular risk factors. Biomark Med. 2010;4(3):351–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Anastasiou E, Lekakis JP, Alevizaki M, Papamichael CM, Megas J, Souvatzoglou A, et al. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care. 1998;21(12):2111–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Banerjee M, Anderson SG, Malik RA, Austin CE, Cruickshank JK. Small artery function 2 years postpartum in women with altered glycaemic distributions in their preceding pregnancy. Clin Sci (Lond). 2012;122(2):53–61.CrossRefGoogle Scholar
  50. 50.
    Salmi AA, Zaki NM, Zakaria R, Nor Aliza AG, Rasool AH. Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa. 2012;41(2):96–104.PubMedCrossRefGoogle Scholar
  51. 51.
    Heitritter SM, Solomon CG, Mitchell GF, Skali-Ounis N, Seely EW. Subclinical inflammation and vascular dysfunction in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab. 2005;90(7):3983–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Audus KL, Soares MJ, Hunt JS. Characteristics of the fetal/maternal interface with potential usefulness in the development of future immunological and pharmacological strategies. J Pharmacol Exp Ther. 2002;301(2):402–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension. 2008;51(4):970–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.PubMedGoogle Scholar
  55. 55.
    Ojeda NB, Grigore D, Alexander BT. Developmental programming of hypertension: insight from animal models of nutritional manipulation. Hypertension. 2008;52(1):44–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Geelhoed JJ, Fraser A, Tilling K, Benfield L, Davey Smith G, Sattar N, et al. Preeclampsia and gestational hypertension are associated with childhood blood pressure independently of family adiposity measures: the Avon Longitudinal Study of Parents and Children. Circulation. 2010;122(12):1192–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Spence D, Stewart MC, Alderdice FA, Patterson CC, Halliday HL. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds. Public Health. 2012;126(7):561–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Orbach H, Matok I, Gorodischer R, Sheiner E, Daniel S, Wiznitzer A et al. Hypertension and antihypertensive drugs in pregnancy and perinatal outcomes. Am J Obstet Gynecol. 2012.Google Scholar
  59. 59.
    de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2):226–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Mu M, Wang SF, Sheng J, Zhao Y, Li HZ, Hu CL, et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis. 2012;105(2):99–113.PubMedCrossRefGoogle Scholar
  61. 61.
    Johnson RC, Schoeni RF. Early-life origins of adult disease: national longitudinal population-based study of the United States. Am J Public Health. 2011;101(12):2317–24.PubMedCrossRefGoogle Scholar
  62. 62.
    West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia. 2011;54(3):504–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Aceti A, Santhakumaran S, Logan KM, Philipps LH, Prior E, Gale C, et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia. 2012;55(11):3114–27.PubMedCrossRefGoogle Scholar
  64. 64.
    Tsadok MA, Friedlander Y, Paltiel O, Manor O, Meiner V, Hochner H, et al. Obesity and blood pressure in 17-year-old offspring of mothers with gestational diabetes: insights from the Jerusalem Perinatal Study. Exp Diabetes Res. 2011;2011:906154.PubMedGoogle Scholar
  65. 65.
    Ojeda NB, Grigore D, Alexander BT. Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis. 2008;15(2):101–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Ojeda NB, Grigore D, Yanes LL, Iliescu R, Robertson EB, Zhang H, et al. Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R758–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Manning J, Vehaskari VM. Postnatal modulation of prenatally programmed hypertension by dietary Na and ACE inhibition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R80–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension. 2005;45(4):754–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Dagan A, Kwon HM, Dwarakanath V, Baum M. Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am J Physiol Renal Physiol. 2008;295(1):F29–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodford JL, Torrens C, Siow RC, Mann GE, Hanson MA, Clough GF. Endothelial dysfunction and reduced antioxidant protection in an animal model of the developmental origins of cardiovascular disease. J Physiol. 2008;586(Pt 19):4709–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Stewart T, Jung FF, Manning J, Vehaskari VM. Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Kidney Int. 2005;68(5):2180–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Ojeda NB, Hennington BS, Williamson DT, Hill ML, Betson NE, Sartori-Valinotti JC, et al. Oxidative stress contributes to sex differences in blood pressure in adult growth-restricted offspring. Hypertension. 2012;60(1):114–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Poston L. Influence of maternal nutritional status on vascular function in the offspring. Microcirculation. 2011;18(4):256–62.PubMedCrossRefGoogle Scholar
  74. 74.
    Nuyt AM. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond). 2008;114(1):1–17.CrossRefGoogle Scholar
  75. 75.
    Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011;59(3):279–89.PubMedCrossRefGoogle Scholar
  76. 76.
    Torrens C, Poston L, Hanson MA. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr. 2008;100(4):760–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Ponzio BF, Carvalho MH, Fortes ZB, do Carmo Franco M. Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1-F3 offspring. Life Sci. 2012;90(15–16):571–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA, et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf). 2012;77(6):808–15.CrossRefGoogle Scholar
  79. 79.
    Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100(4):520–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Li CC, Maloney CA, Cropley JE, Suter CM. Epigenetic programming by maternal nutrition: shaping future generations. Epigenomics. 2010;2(4):539–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97(3):435–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Moritz KM, Cuffe JS, Wilson LB, Dickinson H, Wlodek ME, Simmons DG, et al. Review: sex specific programming: a critical role for the renal renin-angiotensin system. Placenta. 2010;31(Suppl):S40–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Grigore D, Ojeda NB, Alexander BT. Sex differences in the fetal programming of hypertension. Gend Med. 2008;5(Suppl A):S121–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Chen W, Srinivasan SR, Berenson GS. Amplification of the association between birthweight and blood pressure with age: the Bogalusa Heart Study. J Hypertens. 2010;28(10):2046–52.PubMedGoogle Scholar
  85. 85.
    Boivin A, Luo ZC, Audibert F, Masse B, Lefebvre F, Tessier R, et al. Pregnancy complications among women born preterm. CMAJ. 2012;184(16):1777–84.PubMedGoogle Scholar
  86. 86.
    Innes KE, Marshall JA, Byers TE, Calonge N. A woman's own birth weight and gestational age predict her later risk of developing preeclampsia, a precursor of chronic disease. Epidemiology. 1999;10(2):153–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Dempsey JC, Williams MA, Luthy DA, Emanuel I, Shy K. Weight at birth and subsequent risk of preeclampsia as an adult. Am J Obstet Gynecol. 2003;189(2):494–500.PubMedCrossRefGoogle Scholar
  88. 88.
    Bo S, Marchisio B, Volpiano M, Menato G, Pagano G. Maternal low birth weight and gestational hyperglycemia. Gynecol Endocrinol. 2003;17(2):133–6.PubMedGoogle Scholar
  89. 89.
    Innes KE, Byers TE, Marshall JA, Baron A, Orleans M, Hamman RF. Association of a woman's own birth weight with subsequent risk for gestational diabetes. JAMA. 2002;287(19):2534–41.PubMedCrossRefGoogle Scholar
  90. 90.
    De B, Lin S, Lohsoonthorn V, Williams MA. Risk of preterm delivery in relation to maternal low birth weight. Acta Obstet Gynecol Scand. 2007;86(5):565–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Gallo LA, Denton KM, Moritz KM, Tare M, Parkington HC, Davies M, et al. Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats. Hypertension. 2012;60(1):206–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Tran M, Gallo LA, Wadley GD, Jefferies AJ, Moritz KM, Wlodek ME. Effect of pregnancy for females born small on later life metabolic disease risk. PLoS One. 2012;7(9):e45188.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics and the Women’s Health Research CenterUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations