Current Cardiovascular Risk Reports

, Volume 6, Issue 1, pp 27–34

Chylomicrons: A Key Biomarker and Risk Factor for Cardiovascular Disease and for the Understanding of Obesity

Lipids (JM Ordovas, Section Editor)

Abstract

Cardiovascular disease can be considered a condition of chronic low-grade inflammation. Postprandial hyperlipidemia and obesity can both exacerbate inflammatory processes. Postprandial lipemia stimulates the activation of leukocytes, the production of chemokines, and activation of the complement system. Obesity is also associated with postprandial hyperlipidemia by hepatic overproduction of very low-density lipoprotein (VLDL) and consequently delayed clearance of intestinally derived chylomicrons due to competition for the same metabolic pathways. Insulin resistance is one of the key elements leading to hepatic VLDL overproduction and is also a key factor in the generation of inflammation. These metabolic derangements cause accumulation of atherogenic remnant lipoproteins, which is also a proatherogenic mechanism. Change in lifestyle is the most important therapeutic strategy to stop this vicious circle of postprandial hyperlipidemia, obesity, inflammation, insulin resistance, and cardiovascular disease.

Keywords

Triglyceride Apolipoprotein B48 Adiposity Atherosclerosis Inflammation 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60:473–85.PubMedGoogle Scholar
  3. 3.
    Cohn JS. Postprandial lipemia and remnant lipoproteins. Clin Lab Med. 2006;26:773–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Alipour A, van Oostrom AJ, Izraeljan A, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28:792–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298:299–308.PubMedCrossRefGoogle Scholar
  6. 6.
    van Oostrom AJ, van Wijk JP, Sijmonsma TP, Rabelink TJ, Castro Cabezas M. Increased expression of activation markers on monocytes and neutrophils in type 2 diabetes. Neth J Med. 2004;62:320–5.PubMedGoogle Scholar
  7. 7.
    Cohn JS, Johnson EJ, Millar JS, et al. Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res. 1993;34:2033–40.PubMedGoogle Scholar
  8. 8.
    Irving BA, Nair KS, Srinivasan M. Effects of insulin sensitivity, body composition, and fitness on lipoprotein particle sizes and concentrations determined by nuclear magnetic resonance. J Clin Endocrinol Metab. 2011;96:E713–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Dole VP, Hamlin 3rd JT. Particulate fat in lymph and blood. Physiol Rev. 1962;42:674–701.PubMedGoogle Scholar
  10. 10.
    Haberbosch W, Poli A, Augustin J. Characterization of human chylomicrons. Biochim Biophys Acta. 1982;713:398–409.PubMedGoogle Scholar
  11. 11.
    Hussain MM, Kedees MH, Singh K, Athar H, Jamali NZ. Signposts in the assembly of chylomicrons. Front Biosci. 2001;6:D320–31.PubMedCrossRefGoogle Scholar
  12. 12.
    • Iqbal J, Hussain MM: Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009, 296:E1183–1194. This is an excellent review on the intracellular processes involved in intestinal lipid absorption and chylomicron formation. PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips C, Mullan K, Owens D, Tomkin GH. Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis. 2006;187:57–64.PubMedCrossRefGoogle Scholar
  14. 14.
    • Siddiqi S, Saleem U, Abumrad NA, et al.: A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res 2010, 51:1918–28. This study identified multiple proteins responsible for the formation of prechylomicron transport vesicles. PubMedCrossRefGoogle Scholar
  15. 15.
    Mansbach 2nd CM, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293:G645–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Mansbach CM, Siddiqi SA. The biogenesis of chylomicrons. Annu Rev Physiol. 2010;72:315–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Schaefer EJ, Wetzel MG, Bengtsson G, et al. Transfer of human lymph chylomicron constituents to other lipoprotein density fractions during in vitro lipolysis. J Lipid Res. 1982;23:1259–73.PubMedGoogle Scholar
  18. 18.
    Ehnholm C, Mahley RW, Chappell DA, et al. Role of apolipoprotein E in the lipolytic conversion of beta-very low density lipoproteins to low density lipoproteins in type III hyperlipoproteinemia. Proc Natl Acad Sci U S A. 1984;81:5566–70.PubMedCrossRefGoogle Scholar
  19. 19.
    •• Beigneux AP, Franssen R, Bensadoun A, et al.: Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009, 29:956–62. This interesting study identified a mutation in GPIHBP1 in a patient with chylomicronemia and confirmed that GPIHBP1 is necessary for binding LPL with chylomicrons in a mouse model. PubMedCrossRefGoogle Scholar
  20. 20.
    •• Weinstein MM, Yin L, Tu Y, et al.: Chylomicronemia elicits atherosclerosis in mice--brief report. Arterioscler Thromb Vasc Biol 2010, 30:20–3. This study shows a direct relationship between chylomicronemia and atherosclerosis in mice and describes an interesting mouse model to further investigate this relationship. PubMedCrossRefGoogle Scholar
  21. 21.
    Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50(Suppl):S86–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Bharadwaj KG, Hiyama Y, Hu Y, et al. Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem. 2010;285:37976–86.PubMedCrossRefGoogle Scholar
  23. 23.
    De Bruin TW, Brouwer CB, Gimpel JA, Erkelens DW. Postprandial decrease in HDL cholesterol and HDL apo A-I in normal subjects in relation to triglyceride metabolism. Am J Physiol. 1991;260:E492–8.PubMedGoogle Scholar
  24. 24.
    Erkelens DW, de Bruin TW, Castro Cabezas M. Tulp syndrome. Lancet. 1993;342:1536–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Barritt DW. Alimentary lipaemia in men with coronary artery disease and in controls. Br Med J. 1956;2:640–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Brown DF, Kinch SH, Doyle JT. Serum triglycerides in health and in ischemic heart disease. N Engl J Med. 1965;273:947–52.PubMedCrossRefGoogle Scholar
  27. 27.
    de Groot LC, van Staveren WA, Burema J. Survival beyond age 70 in relation to diet. Nutr Rev. 1996;54:211–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Weintraub MS, Grosskopf I, Rassin T, et al. Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: case control study over three years. BMJ. 1996;312:935–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb. 1992;12:1336–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Daskalova DC, Kolovou GD, Panagiotakos DB, Pilatis ND, Cokkinos DV. Increase in aortic pulse wave velocity is associated with abnormal postprandial triglyceride response. Clin Cardiol. 2005;28:577–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79:350–4.PubMedCrossRefGoogle Scholar
  33. 33.
    van Oostrom AJ, Sijmonsma TP, Verseyden C, et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res. 2003;44:576–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Castro Cabezas M, Halkes CJ, Meijssen S, van Oostrom AJ, Erkelens DW. Diurnal triglyceride profiles: a novel approach to study triglyceride changes. Atherosclerosis. 2001;155:219–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Halkes CJ, Castro Cabezas M, van Wijk JP, Erkelens DW. Gender differences in diurnal triglyceridemia in lean and overweight subjects. Int J Obes Relat Metab Disord. 2001;25:1767–74.PubMedCrossRefGoogle Scholar
  36. 36.
    van Oostrom AJ, Castro Cabezas M, Ribalta J, et al. Diurnal triglyceride profiles in healthy normolipidemic male subjects are associated to insulin sensitivity, body composition and diet. Eur J Clin Invest. 2000;30:964–71.PubMedCrossRefGoogle Scholar
  37. 37.
    van Wijk JP, Castro Cabezas M, Halkes CJ, Erkelens DW. Effects of different nutrient intakes on daytime triacylglycerolemia in healthy, normolipemic, free-living men. Am J Clin Nutr. 2001;74:171–8.PubMedGoogle Scholar
  38. 38.
    Geluk CA, Halkes CJ, De Jaegere PP, Plokker TW, Castro Cabezas M. Daytime triglyceridemia in normocholesterolemic patients with premature atherosclerosis and in their first-degree relatives. Metabolism. 2004;53:49–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Miller M, Stone NJ, Ballantyne C, et al.: Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association Circulation 2011, 123:00–00.Google Scholar
  42. 42.
    Zilversmit DB. Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem. 1995;41:153–8.PubMedGoogle Scholar
  43. 43.
    Stender S, Zilversmit DB. Comparison of cholesteryl ester transfer from chylomicrons and other plasma lipoproteins to aortic intima media of cholesterol-fed rabbits. Arteriosclerosis. 1982;2:493–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 2003;23:1595–600.PubMedCrossRefGoogle Scholar
  45. 45.
    van Oostrom AJ, Rabelink TJ, Verseyden C, et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis. 2004;177:175–82.PubMedCrossRefGoogle Scholar
  46. 46.
    •• Gower RM, Wu H, Foster GA, et al.: CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol 2011, 31:160–166. This excellent study shows a direct relationship between postprandial leukocyte activation with increased vascular adhesion of monocytes postprandially. PubMedCrossRefGoogle Scholar
  47. 47.
    Tertov VV, Kalenich OS, Orekhov AN. Lipid-laden white blood cells in the circulation of patients with coronary heart disease. Exp Mol Pathol. 1992;57:22–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bentley C, Hathaway N, Widdows J, et al.: Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis 2010, epublication.Google Scholar
  49. 49.
    Skrede B, Blomhoff R, Maelandsmo GM, et al. Uptake of chylomicron remnant retinyl esters in human leukocytes in vivo. Eur J Clin Invest. 1992;22:229–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Alipour A, Elte JW, van Zaanen HC, Rietveld AP, Castro Cabezas M. Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl. 2008;9:39–44.PubMedCrossRefGoogle Scholar
  51. 51.
    De Pascale C, Avella M, Perona JS, et al. Fatty acid composition of chylomicron remnant-like particles influences their uptake and induction of lipid accumulation in macrophages. Febs J. 2006;273:5632–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Botham KM, Moore EH, De Pascale C, Bejta F. The induction of macrophage foam cell formation by chylomicron remnants. Biochem Soc Trans. 2007;35:454–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Halkes CJ, van Dijk H, de Jaegere PPT, et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21:1526–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Scantlebury T, Maslowska M, Cianflone K. Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes. J Biol Chem. 1998;273:20903–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Alipour A, van Oostrom AJ, Van Wijk JP, et al. Mannose binding lectin deficiency and triglyceride-rich lipoprotein metabolism in normolipidemic subjects. Atherosclerosis. 2009;206:444–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.PubMedCrossRefGoogle Scholar
  57. 57.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Castro Cabezas M, de Bruin TW, de Valk HW, et al. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest. 1993;92:160–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Karpe F, Bickerton AS, Hodson L, et al. Removal of triacylglycerols from chylomicrons and VLDL by capillary beds: the basis of lipoprotein remnant formation. Biochem Soc Trans. 2007;35:472–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Halkes CJ, Van Wijk JP, Ribalta J, Masana L, Castro Cabezas M. Diurnal triglyceridaemia and insulin resistance in mildly obese subjects with normal fasting plasma lipids. J Intern Med. 2004;255:74–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Hsieh J, Hayashi AA, Webb J, Adeli K. Postprandial dyslipidemia in insulin resistance: mechanisms and role of intestinal insulin sensitivity. Atheroscler Suppl. 2008;9:7–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Otokozawa S, Ai M, Diffenderfer MR, et al. Fasting and postprandial apolipoprotein B-48 levels in healthy, obese, and hyperlipidemic subjects. Metabolism. 2009;58:1536–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Kumar V, Madhu SV, Singh G, Gambhir JK. Post-prandial hypertriglyceridemia in patients with type 2 diabetes mellitus with and without macrovascular disease. J Assoc Physicians India. 2010;58:603–7.PubMedGoogle Scholar
  64. 64.
    van Wijk JP, de Koning EJ, Castro Cabezas M, Rabelink TJ. Rosiglitazone improves postprandial triglyceride and free fatty acid metabolism in type 2 diabetes. Diabetes Care. 2005;28:844–9.PubMedCrossRefGoogle Scholar
  65. 65.
    • van Wijk JP, Hoepelman AI, de Koning EJ, et al.: Differential effects of rosiglitazone and metformin on postprandial lipemia in patients with HIV-lipodystrophy. Arterioscler Thromb Vasc Biol 2011, 31:228–33. An interesting observation showing that rosiglitazone increases postprandial remnant-like particle cholesterol in patients with HIV lipodystrophy, but this was unaffected by metformin. PubMedCrossRefGoogle Scholar
  66. 66.
    Duez H, Lamarche B, Valero R, et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation. 2008;117:2369–76.PubMedCrossRefGoogle Scholar
  67. 67.
    • McQuaid SE, Hodson L, Neville MJ, et al.: Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 2011, 60:47–55. This extensive study shows that adipose fat tissue storage after meals is substantially suppressed in obese men, which impairs dietary fat storage. PubMedCrossRefGoogle Scholar
  68. 68.
    Wang YI, Schulze J, Raymond N, et al. Endothelial inflammation correlates with subject triglycerides and waist size after a high-fat meal. Am J Physiol Heart Circ Physiol. 2011;300:H784–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Mraz M, Lacinova Z, Drapalova J, et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2011;96:E606–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98:458–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Lozano A, Perez-Martinez P, Delgado-Lista J, et al.: Body mass interacts with fat quality to determine the postprandial lipoprotein response in healthy young adults. Nutr Metab Cardiovasc Dis 2010, epublication.Google Scholar
  72. 72.
    Maraki MI, Aggelopoulou N, Christodoulou N, et al. Lifestyle intervention leading to moderate weight loss normalizes postprandial triacylglycerolemia despite persisting obesity. Obesity (Silver Spring). 2011;19:968–76.CrossRefGoogle Scholar
  73. 73.
    Mestek ML. Physical activity, blood lipids, and lipoproteins. Am J Lifestyle Med. 2009;3:279–83.CrossRefGoogle Scholar
  74. 74.
    van Oostrom AJ, Plokker HW, van Asbeck BS, et al. Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis. 2006;185:331–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169:572–8.PubMedCrossRefGoogle Scholar
  76. 76.
    • Jun M, Foote C, Lv J, et al.: Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010, 375:1875–1884. This large meta-analysis on fibrates in a heterogeneous population showed a modest reduction in cardiovascular events. PubMedCrossRefGoogle Scholar
  77. 77.
    • Aron-Wisnewsky J, Julia Z, Poitou C, et al.: Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab 2011, 96:1151–9. This article shows the positive effects of bariatric surgery in women on lipid metabolism by an increased reverse cholesterol pathway and reduction in cholesteryl ester transfer protein. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.St Franciscus Gasthuis Rotterdam, Department of Internal MedicineCentre for Diabetes and Vascular MedicineRotterdamThe Netherlands

Personalised recommendations