Current Cardiovascular Risk Reports

, Volume 3, Issue 1, pp 12–17 | Cite as

Genomewide association studies and lipid risk factors

  • Ralph Burkhardt
  • Eimear E. Kenny
  • Jan L. Breslow


Plasma concentrations of lipids and lipoproteins are well-established risk factors for atherosclerotic coronary heart disease and show substantial heritability. Identification of the genetic factors underlying such complex genetic traits, in which multiple genes and significant gene-environment interactions contribute to the variation, has been challenging. This article reviews recent findings from the first wave of genomewide association studies conducted to identify loci with common variants determining high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels. These studies confirmed previously known common variants in candidate genes, the existence for the first time of common variants in other candidate genes, and new, previously unsuspected loci. This review also discusses the next steps: to identify the causal functional variants at the associated loci, decipher their modes of action, and consider how this information may be translated into clinical applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Kuulasmaa K, Tunstall-Pedoe H, Dobson A, et al.: Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet 2000, 355:675–687.PubMedCrossRefGoogle Scholar
  2. 2.
    Namboodiri KK, Kaplan EB, Heuch I, et al.: The Collaborative Lipid Research Clinics Family Study: biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins. Genet Epidemiol 1985, 2:227–254.PubMedCrossRefGoogle Scholar
  3. 3.
    Rader DJ, Cohen J, Hobbs HH: Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003, 111:1795–1803.PubMedGoogle Scholar
  4. 4.
    Lohmueller KE, Pearce CL, Pike M, et al.: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003, 33:177–182.PubMedCrossRefGoogle Scholar
  5. 5.
    Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516–1517.PubMedCrossRefGoogle Scholar
  6. 6.
    Frazer KA, Ballinger DG, Cox DR, et al.: A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449:851–861.PubMedCrossRefGoogle Scholar
  7. 7.
    International HapMap Consortium: A haplotype map of the human genome. Nature 2005, 437:1299–1320.Google Scholar
  8. 8.
    Manolio TA, Brooks LD, Collins FS: A HapMap harvest of insights into the genetics of common disease. J Clin Invest 2008, 118:1590–1605.PubMedCrossRefGoogle Scholar
  9. 9.
    Pearson TA, Manolio TA: How to interpret a genome-wide association study. JAMA 2008, 299:1335–1344.PubMedCrossRefGoogle Scholar
  10. 10.
    Zeggini E, Scott LJ, Saxena R, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008, 40:638–645.PubMedCrossRefGoogle Scholar
  11. 11.
    Loos RJ, Lindgren CM, Li S, et al.: Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008, 40:768–775.PubMedCrossRefGoogle Scholar
  12. 12.
    McPherson R, Pertsemlidis A, Kavaslar N, et al.: A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316:1488–1491.PubMedCrossRefGoogle Scholar
  13. 13.
    Helgadottir A, Thorleifsson G, Manolescu A, et al.: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316:1491–1493.PubMedCrossRefGoogle Scholar
  14. 14.
    Samani NJ, Erdmann J, Hall AS, et al.: Genomewide association analysis of coronary artery disease. N Engl J Med 2007, 357:443–453.PubMedCrossRefGoogle Scholar
  15. 15.
    Hindorff LA, Junkins HA, Manolio TA: A catalog of published genome-wide association studies. Available at: Accessed November 26, 2008.
  16. 16.
    Kathiresan S, Melander O, Guiducci C, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197.PubMedCrossRefGoogle Scholar
  17. 17.
    Willer CJ, Sanna S, Jackson AU, et al.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008, 40:161–169.PubMedCrossRefGoogle Scholar
  18. 18.
    Kooner JS, Chambers JC, Aguilar-Salinas CA, et al.: Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 2008, 40:149–151.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandhu MS, Waterworth DM, Debenham SL, et al.: LDL-cholesterol concentrations: a genome-wide association study. Lancet 2008, 371:483–491.PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace C, Newhouse SJ, Braund P, et al.: Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 2008, 82:139–149.PubMedCrossRefGoogle Scholar
  21. 21.
    Benn M, Stene MC, Nordestgaard BG, et al.: Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. J Clin Endocrinol Metab 2008, 93:1038–1045.PubMedCrossRefGoogle Scholar
  22. 22.
    Breslow JL: Genetics of lipoprotein abnormalities associated with coronary artery disease susceptibility. Annu Rev Genet 2000, 34:233–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Kotowski IK, Pertsemlidis A, Luke A, et al.: A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 2006, 78:410–422.PubMedCrossRefGoogle Scholar
  24. 24.
    Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A: Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004, 114:1343–1353.PubMedGoogle Scholar
  25. 25.
    Cohen JC, Kiss RS, Pertsemlidis A, et al.: Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004, 305:869–872.PubMedCrossRefGoogle Scholar
  26. 26.
    Lai CQ, Parnell LD, Ordovas JM: The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol 2005, 16:153–166.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown ML, Inazu A, Hesler CB, et al.: Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989, 342:448–451.PubMedCrossRefGoogle Scholar
  28. 28.
    Boekholdt SM, Sacks FM, Jukema JW, et al.: Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation 2005, 111:278–287.PubMedCrossRefGoogle Scholar
  29. 29.
    Isaacs A, Sayed-Tabatabaei FA, Njajou OT, et al.: The −514 C->T hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis. J Clin Endocrinol Metab 2004, 89:3858–3863.PubMedCrossRefGoogle Scholar
  30. 30.
    Connelly PW: The role of hepatic lipase in lipoprotein metabolism. Clin Chim Acta 1999, 286:243–255.PubMedCrossRefGoogle Scholar
  31. 31.
    Gilbert B, Rouis M, Griglio S, et al.: Lipoprotein lipase (LPL) deficiency: a new patient homozygote for the preponderant mutation Gly188Glu in the human LPL gene and review of reported mutations: 75% are clustered in exons 5 and 6. Ann Genet 2001, 44:25–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Rip J, Nierman MC, Ross CJ, et al.: Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol 2006, 26:1236–1245.PubMedCrossRefGoogle Scholar
  33. 33.
    Villeger L, Abifadel M, Allard D, et al.: The UMD-LDLR database: additions to the software and 490 new entries to the database. Hum Mutat 2002, 20:81–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Badellino KO, Rader DJ: The role of endothelial lipase in high-density lipoprotein metabolism. Curr Opin Cardiol 2004, 19:392–395.PubMedCrossRefGoogle Scholar
  35. 35.
    Burkhardt R, Kenny EE, Lowe JK, et al.: Common SNPs in HMGCR in Micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon 13. Arterioscler Thromb Vasc Biol 2008, 28:2078–2084.PubMedCrossRefGoogle Scholar
  36. 36.
    Hegedus Z, Czibula A, Kiss-Toth E: Tribbles: a family of kinase-like proteins with potent signalling regulatory function. Cell Signal 2007, 19:238–250.PubMedCrossRefGoogle Scholar
  37. 37.
    Shimizugawa T, Ono M, Shimamura M, et al.: ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 2002, 277:33742–33748.PubMedCrossRefGoogle Scholar
  38. 38.
    Koishi R, Ando Y, Ono M, et al.: Angptl3 regulates lipid metabolism in mice. Nat Genet 2002, 30:151–157.PubMedCrossRefGoogle Scholar
  39. 39.
    Iizuka K, Bruick RK, Liang G, et al.: Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 2004, 101:7281–7286.PubMedCrossRefGoogle Scholar
  40. 40.
    Iizuka K, Miller B, Uyeda K: Deficiency of carbohydrateactivated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab 2006, 291:E358–E364.PubMedCrossRefGoogle Scholar
  41. 41.
    Schadt EE, Molony C, Chudin E, et al.: Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008, 6:e107.PubMedCrossRefGoogle Scholar
  42. 42.
    Nielsen MS, Jacobsen C, Olivecrona G, et al.: Sortilin/ neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem 1999, 274:8832–8836.PubMedCrossRefGoogle Scholar
  43. 43.
    Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.PubMedCrossRefGoogle Scholar
  44. 44.
    Orho-Melander M, Melander O, Guiducci C, et al.: Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 2008, 57:3112–3121.PubMedCrossRefGoogle Scholar
  45. 45.
    Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al.: Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A 2008, 105:11915–11920.PubMedCrossRefGoogle Scholar
  46. 46.
    Collins FS, Rossant J, Wurst W: A mouse for all reasons. Cell 2007, 128:9–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Maxwell KN, Breslow JL: Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A 2004, 101:7100–7105.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson PW, D’Agostino RB, Levy D, et al.: Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97:1837–1847.PubMedGoogle Scholar
  49. 49.
    Medina MW, Gao F, Ruan W, et al.: Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008, 118:355–362.PubMedCrossRefGoogle Scholar
  50. 50.
    SEARCH Collaborative Group, Link E, Parish S, et al.: SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 2008, 359:789–799.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  • Ralph Burkhardt
  • Eimear E. Kenny
  • Jan L. Breslow
    • 1
  1. 1.Laboratory of Biochemical Genetics and MetabolismThe Rockefeller UniversityNew YorkUSA

Personalised recommendations