Advertisement

Rapid Detection of Microbial Mass Spectra VITEK-MS for Campylobacter jejuni and Listeria monocytogenes

  • Tu Bowen
  • Xue Yingang
  • Jingchang XueEmail author
  • Du Qiang
  • Li Junhong
  • Tang Hongbing
  • Han Xiaodong
Article

Abstract

A matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) method were established to detect Campylobacter jejuni and Listeria monocytogenes from a chicken farm and samples from commercial live chickens. Suspected isolates were pretreated and crystallized by matrix solutions consisting of ethanol, acetonitrile, and water with different proportions. The effect of matrix composition was evaluated by examining the differences in characteristic peak values and relative abundances. Significantly different matrix solutions were needed for the detection of C. jejuni and L. monocytogenes: the former did not require lysis by formic acid and was sensitive to trifluoroacetic acid (TFA), but the latter was just the opposite. Control of the water content in matrix solution, TFA concentration, and matrix concentration will enhance the number and relative abundance of characteristic peaks and improve the detection rate. An optimized pretreatment enables the rapid identification of foodborne pathogens, which will make it possible to improve the timeliness of disease prevention and foodborne risk monitoring.

Keywords

VITEK-MS microbe identification system Campylobacter jejuni Listeria monocytogenes Matrix solution composition Food risk monitoring 

Notes

Acknowledgments

The authors thank the technical supports by the BioMerieux and the cooperative demonstration laboratories of BioMerieux. The linguistic editing and proofreading provided by TopEdit LLC during the preparation of this manuscript are acknowledged.

Funding Information

This study was funded by the 16th group of Six Talent Climax Foundation of Jiangsu Project (SWYY-230), general scientific research programs of Jiangsu Committee on Health and Hygiene (H2018098), technology support program (social development) of Changzhou (CE20185048), and National Natural Science Foundation of China (Grant No. 21607016).

Compliance with Ethical Standards

Conflict of Interest

Tu Bowen declares no conflict of interest. Xue Yingang declares no conflict of interest. Jingchang Xue declares no conflict of interest. Du Qiang declares no conflict of interest. Li Junhong declares no conflict of interest. Tang Hongbing declares no conflict of interest. Han Xiaodong declares no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Alispahic M, Christensen H, Hess C, Razzazi-Fazeli E, Bisgaard M, Hess M (2011) Identification of Gallibacterium species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry evaluated by multilocus sequence analysis. Int J Med Microbiol 301:513–522.  https://doi.org/10.1016/j.ijmm.2011.03.001 CrossRefPubMedGoogle Scholar
  2. Allos BM (2001) Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206.  https://doi.org/10.1086/319760 CrossRefPubMedGoogle Scholar
  3. Anderson NW, Buchan BW, Riebe KM, Parsons LN, Gnacinski S, Ledeboer NA (2012) Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1008–1013.  https://doi.org/10.1128/JCM.05209-11 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bader O, Weig M, Taverne GL, Lugert R, Gross U, Kuhns M (2011) Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:1359–1365.  https://doi.org/10.1111/j.1469-0691.2010.03398.x CrossRefPubMedGoogle Scholar
  5. Balážová T, Makovcová J, Šedo O, Slaný M, Faldyna M, Zdráhal Z (2014) The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling. FEMS Microbiol Lett 353:77–84.  https://doi.org/10.1111/1574-6968.12408 CrossRefPubMedGoogle Scholar
  6. Ben Braïek O, Smaoui S, Ennouri K, Hani K, Ghrairi T (2018) Genetic analysis with random amplified polymorphic DNA of the multiple enterocin-producing enterococcus lactis 4CP3 strain and its efficient role in the growth of Listeria monocytogenes in raw beef meat. Biomed Res Int 2018:5827986.  https://doi.org/10.1155/2018/5827986 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blaser MJ (1997) Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis 176:s103–s105CrossRefGoogle Scholar
  8. Briese T, Palacios G, Kokoris M, Jabado O, Liu Z, Renwick N, Kapoor V, Casas I, Pozo F, Limberger R, Perez-Brena P, Ju J, Lipkin WI (2005) Diagnostic system for rapid and sensitive differential detection of pathogens. Emerg Infect Dis 11:310–313.  https://doi.org/10.3201/eid1102.040492 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bulajic S, Colovic S, Misic D, Djordjevic J, Savic-Radovanovic R, Asanin J, Ledina T (2017) Enterotoxin production and antimicrobial susceptibility in Staphylococci isolated from traditional raw milk cheeses in Serbia. J Environ Sci Health B 52:864–870.  https://doi.org/10.1080/03601234.2017.1361764 CrossRefPubMedGoogle Scholar
  10. Christensen JJ, Dargis R, Hammer M, Justesen US, Nielsen XC, Kemp M, Danish MALDI-TOF MS Study Group (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. J Clin Microbiol 50:1787–1791.  https://doi.org/10.1128/JCM.06339-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Carolis E, Vella A, Vaccaro L, Torelli R, Spanu T, Fiori B, Posteraro B, Sanguinetti M (2014) Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. J Infect Dev Ctries 8:1081–1088.  https://doi.org/10.3855/jidc.3623 CrossRefPubMedGoogle Scholar
  12. Dubois D, Segonds C, Prere MF, Marty N, Oswald E (2013) Identification of clinical Streptococcus pneumoniae isolates among other alpha and nonhemolytic Streptococci by use of the Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry system. J Clin Microbiol 51:1861–1867.  https://doi.org/10.1128/JCM.03069-12 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferreira L, Sanchez F, Garcia P, Rivas R, Mateos PF, Martínez E, González JM, Velázquez E (2011) MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One 6:e20223.  https://doi.org/10.1371/journal.pone.0020223 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Giaouris E, Chorianopoulos N, Nychas GJ (2014) Acquired acid adaptation of Listeria monocytogenes during its planktonic growth enhances subsequent survival of its sessile population to disinfection with natural organic compounds. Food Res Int 64:896–900.  https://doi.org/10.1016/j.foodres.2014.08.044 CrossRefPubMedGoogle Scholar
  15. Hood AM, Pearson AD, Shahamat M (1988) The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups. Epidemiol Infect 100:17–25CrossRefGoogle Scholar
  16. Jamal WY, Ahmad S, Khan ZU, Rotimi V (2014) Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. Int J Infect Dis 26:167–170.  https://doi.org/10.1016/j.ijid.2014.05.031 CrossRefPubMedGoogle Scholar
  17. Kassim A, Pflüger V, Premji Z, Daubenberger C, Revathi G (2017) Comparison of biomarker based matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol 17:128.  https://doi.org/10.1186/s12866-017-1037-z CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mengaud J, Vicente MF, Chenevert J, Pereira JM, Geoffroy C, Gicquel-Sanzey B, Baquero F, Perez-Diaz JC, Cossart P (1988) Expression in Escherichia coli and analysis of the listeiolysin O determinant of Listeria monocytogenes. Infect Immun 56:766–772PubMedPubMedCentralGoogle Scholar
  19. Mesureur J, Arend S, Cellière B, Courault P, Cotte-Pattat PJ, Totty H, Deol P, Mick V, Girard V, Touchberry J, Burrowes V, Lavigne JP, O’Callaghan D, Monnin V, Keriel A (2018) A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella. PLoS Negl Trop Dis 12:e0006874.  https://doi.org/10.1371/journal.pntd.0006874 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Murugaiyan J, Ahrholdt J, Kowbel V, Roesler U (2012) Establishment of a matrix-assisted laser desorption ionization time-of-flight mass spectrometry database for rapid identification of infectious achlorophyllous green micro-algae of the genus Prototheca. Clin Microbiol Infect 18:461–467.  https://doi.org/10.1111/j.1469-0691.2011.03593.x CrossRefPubMedGoogle Scholar
  21. Nancy V, Sharon W, David W, Catherine P, Karen W (2005) Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71:58–64.  https://doi.org/10.1128/AEM.71.1.58-64.2005 CrossRefGoogle Scholar
  22. Quéro L, Girard V, Pawtowski A, Tréguer S, Weill A, Arend S, Cellière B, Polsinelli S, Monnin V, van Belkum A, Vasseur V, Nodet P, Mounier J (2019) Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiol 81:76–88.  https://doi.org/10.1016/j.fm.2018.05.001 CrossRefPubMedGoogle Scholar
  23. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82.  https://doi.org/10.1038/nrmicro2243 CrossRefPubMedGoogle Scholar
  24. Senok A, Yousif A, Mazi W, Sharaf E, Bindayna K, Elnima A, Botta G (2007) Pattern of antibiotic susceptibility in Campylobacter jejuni isolates of human and poultry origin. Jpn J Infect Dis 60:1–4PubMedGoogle Scholar
  25. Suh M, Hamburg DM, Gregory ST, Dahlberg AE, Limbach PA (2005) Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 5:4818–4831.  https://doi.org/10.1002/pmic.200402111 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sulaiman IM, Banerjee P, Hsieh YH, Miranda N, Simpson S, Kerdahi K (2018) Rapid detection of Staphylococcus aureus and related species isolated from food, environment, cosmetics, a medical device, and clinical samples using the VITEK MS microbial identification system. J AOAC Int 101:1135–1143.  https://doi.org/10.5740/jaoacint.17-0284 CrossRefPubMedGoogle Scholar
  27. Ugarte-Ruiz M, Domínguez L, Corcionivoschi N, Wren BW, Dorrell N, Gundogdu O (2018) Exploring the oxidative, antimicrobial and genomic properties of Campylobacter jejuni strains isolated from poultry. Res Vet Sci 119:170–175.  https://doi.org/10.1016/j.rvsc.2018.06.016 CrossRefPubMedGoogle Scholar
  28. Van Ert MN, Hofstadler SA, Jiang Y, Busch JD, Wagner DM, Drader JJ, Ecker DJ, Hannis JC, Huynh LY, Schupp JM, Simonson TS, Keim P (2004) Mass spectrometry provides accurate characterization of two genetic marker types in Bacillus anthracis. Biotechniques 37:642–644.  https://doi.org/10.2144/04374RR01 CrossRefPubMedGoogle Scholar
  29. Van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907.  https://doi.org/10.1128/JCM.02071-09 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, Glupczynski Y (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol 48:4015–4021.  https://doi.org/10.1128/JCM.01234-10 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang H, Fan YY, Kudinha XZP, Xiao M, Zhang L, Fan X, Kong F, Xu YC (2016) A comprehensive evaluation of the Bruker Biotyper MS and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of yeasts, Part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study, 2012 to 2013. J Clin Microbiol 54:1376–1380.  https://doi.org/10.1128/JCM.00162-16 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang H, Wang L, Hu Q, Wang R, Li Y, Kidd M (2018) Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J Food Prot 81:1321–1330.  https://doi.org/10.4315/0362-028X.JFP-17-381 CrossRefPubMedGoogle Scholar
  33. Xiao D, Zhao F, Lv M, Zhang H, Zhang Y, Huang H, Su P, Zhang Z, Zhang J (2012) Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagn Microbiol Infect Dis 73:301–307.  https://doi.org/10.1016/j.diagmicrobio.2012.04.004 CrossRefPubMedGoogle Scholar
  34. Ye K, Wang H, Jiang Y, Xu X, Cao J, Zhou G (2014) Development of interspecific competition models for the growth of Listeria monocytogenes and Lactobacillus on vacuum-packaged chilled pork by quantitative real-time PCR. Food Res Int 64:626–633.  https://doi.org/10.1016/j.foodres.2014.07.017 CrossRefPubMedGoogle Scholar
  35. Zangenah S, Güleryüz G, Boräng S, Ullberg M, Bergman P, Ozenci V (2013) Identification of clinical Pasteurella isolates by MALDI-TOF-a comparison with VITEK 2 and conventional microbiological methods. Diagn Microbiol Infect Dis 77:96–98.  https://doi.org/10.1016/j.diagmicrobio.2013.06.024 CrossRefPubMedGoogle Scholar
  36. Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z (2013) MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS One 8:e56139.  https://doi.org/10.1371/journal.pone.0056139 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Changzhou Center for Disease Control and PreventionChangzhouChina
  2. 2.Key Laboratory of Environmental Protection of Water Environment Biological 10 Monitoring of Jiangsu ProvinceChangzhou Environmental Monitoring CenterChangzhouChina
  3. 3.School of MedicalNanjing UniversityNanjingChina

Personalised recommendations