Advertisement

Food Analytical Methods

, Volume 13, Issue 1, pp 97–107 | Cite as

Chemometric Approach Using ComDim and PLS-DA for Discrimination and Classification of Commercial Yerba Mate (Ilex paraguariensis St. Hil.)

  • Tatiane Francielli Vieira
  • Gustavo Yasuo Figueiredo Makimori
  • Maria Brígida dos Santos Scholz
  • Acácio Antonio Ferreira Zielinski
  • Evandro BonaEmail author
Article

Abstract

Yerba mate samples from three different states of Brazil were evaluated in order to discriminate them regarding the presence of sugar and geographic origin. High-performance liquid chromatography (HPLC), phytochemical compounds, in vitro antioxidant activity, visible and near-infrared (NIR) spectroscopy, colorimetry, and electronic nose were used in tandem with chemometric methods. The multiblock exploratory analysis (ComDim) was able to discriminate the samples containing sugar; however, it was not possible to discriminate them by geographical origin. Furthermore, ComDim results showed the NIR spectra presented the best discriminating capacity. Partial least square discriminant analysis (PLS-DA) models constructed using NIR spectra classified the samples assertively according to the presence of sugar (100% of sensitivity and specificity for the prediction set), and reasonable models were also obtained for the geographic classification (80% of sensitivity and 93% of specificity for the prediction set). The multiblock approach allowed an overall evaluation of the data collected through different analytical methods. In addition, among the methods applied, NIR spectroscopy was faster and cheaper and allowed for better sample discrimination.

Keywords

Near infrared Multiblock analysis Phenolic compounds Electronic nose 

Notes

Funding Information

The authors thank CAPES, CNPq, UTFPR, and IAPAR for their financial support and scholarships.

Compliance with Ethical Standards

Conflict of Interest

Tatiane Francielli Vieira declares that she has no conflict of interest. Gustavo Yasuo Figueiredo Makimori declares that he has no conflict of interest. Maria Brígida dos Santos Scholz declares that she has no conflict of interest. Acácio Antonio Ferreira Zielinski declares that he has no conflict of interest. Evandro Bona declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12161_2019_1520_MOESM1_ESM.pdf (797 kb)
ESM 1 (PDF 7 kb)

References

  1. Barbin DF, Felicio ALDSM, Sun D-W et al (2014) Application of infrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res Int 61:23–32.  https://doi.org/10.1016/j.foodres.2014.01.005 CrossRefGoogle Scholar
  2. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76.  https://doi.org/10.1006/abio.1996.0292 CrossRefGoogle Scholar
  3. Bona E, da Silva RSSF (2016) Coffee and the electronic nose. In: Mendez MR (ed) Electronic noses and tongues in food science. Ac, Oxford, pp 31–38CrossRefGoogle Scholar
  4. Bona E, Makimori GYF, de Oliveira LFP, Neli RR (2018a) Enose CAD. Brazilian Patent BR512018001472–0Google Scholar
  5. Bona E, Março PH, Valderrama P (2018b) Chemometrics applied to food control. In: Holban AM, Grumezescu AM (eds) Handbook of food bioengineering: food control and biosecurity, 1st edn. Elsevier, London, pp 105–133CrossRefGoogle Scholar
  6. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5 CrossRefGoogle Scholar
  7. BRASIL (2002) Resolução - RDC no 259, de 20 de setembro de 2002. Aprova o Regulamento Técnico sobre Rotulagem de Alimentos Embalados. Brasília, DFGoogle Scholar
  8. Burns DA, Ciurczak EW (2007) Handbook of near-infrared analysis, 3rd ednGoogle Scholar
  9. Butiuk AP, Martos MA, Adachi O, Hours RA (2016) Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): effect of plant fraction, processing step and harvesting season. J Appl Res Med Aromat Plants 3:27–33.  https://doi.org/10.1016/j.jarmap.2015.12.003 CrossRefGoogle Scholar
  10. Callao MP, Ruisánchez I (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control 86:283–293.  https://doi.org/10.1016/j.foodcont.2017.11.034 CrossRefGoogle Scholar
  11. Cariou V, Qannari EM, Rutledge DN, Vigneau E (2018) ComDim: from multiblock data analysis to path modeling. Food Qual Prefer 67:27–34.  https://doi.org/10.1016/j.foodqual.2017.02.012 CrossRefGoogle Scholar
  12. CIE (2004) Technical report: colorimetry. Washington, D.C.Google Scholar
  13. Cozzolino D, Restaino E, Fassio A (2010) Discrimination of yerba mate (Ilex paraguayensis St. Hil.) samples according to their geographical origin by means of near infrared spectroscopy and multivariate analysis. Sens & Instrumen Food Qual 4:67–72.  https://doi.org/10.1007/s11694-010-9096-y CrossRefGoogle Scholar
  14. Danezis GP, Tsagkaris AS, Camin F, Brusic V, Georgiou CA (2016) Food authentication: techniques, trends & emerging approaches. TrAC Trends Anal Chem 85:123–132.  https://doi.org/10.1016/j.trac.2016.02.026 CrossRefGoogle Scholar
  15. de Godoy RCB, Deliza R, Gheno LB et al (2013) Consumer perceptions, attitudes and acceptance of new and traditional mate tea products. Food Res Int 53:801–807.  https://doi.org/10.1016/j.foodres.2013.02.054 CrossRefGoogle Scholar
  16. Deetae P, Parichanon P, Trakunleewatthana P, Chanseetis C, Lertsiri S (2012) Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem 133:953–959.  https://doi.org/10.1016/j.foodchem.2012.02.012 CrossRefGoogle Scholar
  17. Dubin E, Spiteri M, Dumas A et al (2016) Chemometrics and intelligent laboratory systems common components and specific weights analysis: a tool for metabolomic data pre-processing. 150:41–50.  https://doi.org/10.1016/j.chemolab.2015.11.005 CrossRefGoogle Scholar
  18. El Ghaziri A, Cariou V, Rutledge DN, Qannari EM (2016) Analysis of multiblock datasets using ComDim: overview and extension to the analysis of ( K + 1) datasets. J Chemom 30:420–429.  https://doi.org/10.1002/cem.2810 CrossRefGoogle Scholar
  19. Ferreira MMC (2015) Quimiometria - Conceitos, Métodos e Aplicações. Editora da UNICAMP, CampinasCrossRefGoogle Scholar
  20. Frizon CNT, Oliveira GA, Perussello CA, Peralta-Zamora PG, Camlofski AMO, Rossa ÜB, Hoffmann-Ribani R (2015) Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis. LWT Food Sci Technol 60:795–801.  https://doi.org/10.1016/j.lwt.2014.10.030 CrossRefGoogle Scholar
  21. Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Cruz AGD, Jarvis B, Rodionova OY, Pomerantsev A (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci Food Saf 17:663–677.  https://doi.org/10.1111/1541-4337.12341 CrossRefGoogle Scholar
  22. Heck CI, De Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151.  https://doi.org/10.1111/j.1750-3841.2007.00535.x CrossRefPubMedGoogle Scholar
  23. Isolabella S, Cogoi L, López P, Anesini C, Ferraro G, Filip R (2010) Study of the bioactive compounds variation during yerba mate (Ilex paraguariensis) processing. Food Chem 122:695–699.  https://doi.org/10.1016/j.foodchem.2010.03.039 CrossRefGoogle Scholar
  24. Jouan-Rimbaud Bouveresse D, Pinto RC, Schmidtke LM, Locquet N, Rutledge DN (2011) Identification of significant factors by an extension of ANOVA-PCA based on multi-block analysis. Chemom Intell Lab Syst 106:173–182.  https://doi.org/10.1016/j.chemolab.2010.05.005 CrossRefGoogle Scholar
  25. Kumaran A, Karunakaran RJ (2007) In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT Food Sci Technol 40:344–352.  https://doi.org/10.1016/j.lwt.2005.09.011 CrossRefGoogle Scholar
  26. Lohumi S, Lee S, Lee H, Cho BK (2015) A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci Technol 46:85–98.  https://doi.org/10.1016/j.tifs.2015.08.003 CrossRefGoogle Scholar
  27. Makimori GYF (2018) Desenvolvimento de nariz eletrônico de baixo custo: Comparativo entre a discriminação instrumental e perfil descritivo quantitativo na análise de cafés torrados comerciais. Universidade Tecnológica Federal do ParanáGoogle Scholar
  28. Makimori GYF, Bona E (2019) Commercial instant coffee classification using an electronic nose in tandem with the ComDim-LDA approach. Food Anal Methods 12:1067–1076.  https://doi.org/10.1007/s12161-019-01443-5 CrossRefGoogle Scholar
  29. Malheiros GC (2007) Estudo da alteração da cor e degradação da clorofila durante armazenagem de erva-mate tipo chimarrão. Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos - Universidade Federal de Santa MariaGoogle Scholar
  30. Marquetti I, Link JV, Lemes ALG, Scholz MBS, Valderrama P, Bona E (2016) Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of arabica coffee. Comput Electron Agric 121:313–319.  https://doi.org/10.1016/j.compag.2015.12.018 CrossRefGoogle Scholar
  31. Mejía EG, Song YS, Heck CI, Ramírez-Mares M (2010) Yerba mate tea (Ilex paraguariensis): phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. J Funct Foods 2:23–34.  https://doi.org/10.1016/j.jff.2009.12.003 CrossRefGoogle Scholar
  32. Oliveri P, Downey G (2012) Multivariate class modeling for the verification of food-authenticity claims. TrAC Trends Anal Chem 35:74–86.  https://doi.org/10.1016/j.trac.2012.02.005 CrossRefGoogle Scholar
  33. Peres RG, Tonin FG, Tavares MFM, Rodriguez-Amaya DB (2013) HPLC-DAD-ESI/MS identification and quantification of phenolic compounds in ilex paraguariensis beverages and on-line evaluation of individual antioxidant activity. Molecules 18:3859–3871.  https://doi.org/10.3390/molecules18043859 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Re R, Pellegrini N, Protegentte A et al (1999) Antioxidant activity applying an improved ABST radical cation decolorization assay. Free Radic Biol Med 26:1231–1237.  https://doi.org/10.1016/S0891-5849(98)00315-3 CrossRefPubMedGoogle Scholar
  35. Ropodi AI, Panagou EZ, Nychas G-JE (2016) Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends Food Sci Technol 50:11–25.  https://doi.org/10.1016/j.tifs.2016.01.011 CrossRefGoogle Scholar
  36. Schoefs B (2002) Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol 13:361–371.  https://doi.org/10.1016/S0924-2244(02)00182-6 CrossRefGoogle Scholar
  37. Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphobolybdic-phosphotungstic acid reagents. Am J Enol Vitic 14:144–158Google Scholar
  38. Souza AHP, Corrêa RCG, Barros L, Calhelha RC, Santos-Buelga C, Peralta RM, Bracht A, Matsushita M, Ferreira ICFR (2015) Phytochemicals and bioactive properties of Ilex paraguariensis: an in-vitro comparative study between the whole plant, leaves and stems. Food Res Int 78:286–294.  https://doi.org/10.1016/j.foodres.2015.09.032 CrossRefPubMedGoogle Scholar
  39. Westad F, Marini F (2015) Analytica Chimica Acta validation of chemometric models e a tutorial. Anal Chim Acta 893:14–24.  https://doi.org/10.1016/j.aca.2015.06.056 CrossRefPubMedGoogle Scholar
  40. Workman Jr. J, Weyer L (2007) Practical guide to interpretive near-infrared spectroscopy, 1st ednCrossRefGoogle Scholar
  41. Zielinski AAF, Haminiuk CWI, Alberti A, Nogueira A, Demiate IM, Granato D (2014) A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res Int 60:246–254.  https://doi.org/10.1016/j.foodres.2013.09.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Post-Graduation Program of Food Technology (PPGTA)Federal University of Technology - Paraná (UTFPR)Campo MourãoBrazil
  2. 2.Agronomic Institute of Paraná (IAPAR)LondrinaBrazil
  3. 3.Department of Chemical and Food EngineeringUniversidade Federal de Santa CatarinaFlorianopolisBrazil

Personalised recommendations