Advertisement

Lab-On-A-Chip Extraction of Phenolic Compounds from Extra Virgin Olive Oil

  • Kenia Chávez Ramos
  • Luis Fernando Olguín Contreras
  • María del Pilar Cañizares MacíasEmail author
Article
  • 33 Downloads

Abstract

A novel liquid–liquid extraction method of phenolic compounds from extra virgin olive using microfluidic technique was developed. The microdevice of polydimethylsiloxane (PDMS) was designed in two parts; the first one to carry out the extraction of polyphenols using only an alkaline aqueous solution and the second one to develop the reaction product using Folin–Ciocalteu reagent, which was measured at 730 nm at the microchip exit. Hydrodynamic and chemical parameters, such as flowrates of extraction and reaction, length of microchannels, extraction pH, extraction buffer concentration, and concentration of Folin–Ciocalteu reagent, were evaluated. Although all parameters were important, the results showed that pH, carbonate buffer concentration, and the Folin–Ciocalteu reagent concentration were significant factors and that the increase in the length of the extraction coil enhanced the extraction percentage. The results showed higher extraction efficiency by the microfluidic method, between 46 and 67%, than for the other two batch extraction methods.

Keywords

Polyphenols Lab-on-a-chip Folin–Ciocalteu assay Liquid–liquid microfluidic extraction Extra virgin olive oil 

Notes

Acknowledgements

The authors are truly grateful to Dirección General de Asuntos del Personal Académico (DGAPA) (Project Number IN218415) and to Facultad de Química of Universidad Nacional Autónoma de México (Programa de Apoyo a la Investigación y el Posgrado) (PAIP 5000-9029 and 5000-9023), for their contribution and financial support.

The authors are also grateful to Minerva Monrroy Barreto, PhD, from Unidad de Apoyo a la Investigación y a la Industria (USAII), Facultad de Química, for carrying out the HPLC analyses.

Compliance with Ethical Standards

Conflict of Interest

Kenia Chávez-Ramos declares that she has no conflict of interest. Luis Fernando Olguín-Contreras declares that he has no conflict of interest. María del Pilar Cañizares-Macías declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Supplementary material

12161_2019_1492_MOESM1_ESM.docx (791 kb)
ESM 1 (DOCX 791 kb)

References

  1. Bendini A, Bonoli M, Cerretani L, Biguzzi B, Lercker G, Gallina Toschi T (2003) Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods. J Chromatogr A 985(1–2):425–433.  https://doi.org/10.1016/S0021-9673(02)01460-7 CrossRefGoogle Scholar
  2. Bonoli M, Montanucci M, Toschi TG, Lercker G (2003) Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. J Chromatogr A 1011(1–2):163–172.  https://doi.org/10.1016/S0021-9673(03)01100-2 CrossRefGoogle Scholar
  3. Chakraborty S (2010) Microfluidics and microfabrication. Microfluidics and Microfabrication  https://doi.org/10.1007/978-1-4419-1543-6
  4. Chethan S, Malleshi NG (2007) Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem 105(2):862–870.  https://doi.org/10.1016/j.foodchem.2007.02.0 CrossRefGoogle Scholar
  5. García MA, Soberón E, Cortés M, Rodríguez R, Herrera JL, Alcántara A (2002) Guía de validación de métodos analíticos, 1st edn. A. C. Colegio Nacional de Químicos Farmacéuticos Biólogos México, Ed., MexicoGoogle Scholar
  6. García-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15(12):8813–8826.  https://doi.org/10.3390/molecules15128813 CrossRefGoogle Scholar
  7. Godoy M d P (2013) Nuevas propuestas de procedimientos analíticos sencillos para la cuantificación de compuestos fenólicos presentes en la fracción minoritaria de aceite de oliva. Universidad de ExtremaduraGoogle Scholar
  8. Huber L (2010) Validation of analytical methods, vol 2. Agilent TechnologiesGoogle Scholar
  9. International Olive Council. (2009). Determinación de los biofenoles de los aceites de oliva mediante hplcGoogle Scholar
  10. Kim KH, Tsao R, Yang R, Cui SW (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95(3):466–473.  https://doi.org/10.1016/j.foodchem.2005.01.032 CrossRefGoogle Scholar
  11. Kralj JG, Sahoo HR, Jensen KF (2007) Integrated continuous microfluidic liquid–liquid extraction. Lab on a Chip 7(2):256–263.  https://doi.org/10.1039/B610888A CrossRefGoogle Scholar
  12. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554.  https://doi.org/10.1021/ac0346712 CrossRefGoogle Scholar
  13. Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16(12):1995–2015.  https://doi.org/10.1007/s00542-010-1141-6 CrossRefGoogle Scholar
  14. Lozano J, Fernández-Gutiérrez A, Segura-Carretero A (2009) Composición del aceite de oliva. Aceite de Oliva Virgen: Tesoro de Andalucía 48:197–224Google Scholar
  15. Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M (2004) Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal Chem 76(15):4495–4500.  https://doi.org/10.1021/ac049844h CrossRefGoogle Scholar
  16. Mary P, Studer V, Tabeling P (2008) Microfluidic droplet-based liquid–liquid extraction. Anal Chem 80(8):2680–2687.  https://doi.org/10.1021/ac800088s CrossRefGoogle Scholar
  17. MicroChem (n.d.) SU-8 3000 permanent epoxy.  https://doi.org/10.1146/annurev.matsci.28.1.153
  18. Miller JN, Miller JC (2004) Statistics and chemometrics for analytical chemistry. Technometrics 46:498–499.  https://doi.org/10.1198/tech.2004.s248 Google Scholar
  19. Monasterio RP, De Los Angeles Fernández M, Silva MF (2013) High-throughput determination of phenolic compounds in virgin olive oil using dispersive liquid-liquid microextraction- capillary zone electrophoresis. Electrophoresis 34(12):1836–1843.  https://doi.org/10.1002/elps.201300117 CrossRefGoogle Scholar
  20. Pirisi FM, Cabras P, Cao CF, Migliorini M, Muggelli M (2000) Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. J Agric Food Chem 48PDF:1191–1196CrossRefGoogle Scholar
  21. Ríos Á, Zougagh M, Avila M (2012) Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. Anal Chim Acta 740:1–11.  https://doi.org/10.1016/j.aca.2012.06.024 CrossRefGoogle Scholar
  22. Salik A, Fabek D, Rukavina I, Zelic B (2011) Aqueous two-phase extraction of polyphenols using a microchannel system—process optimization and intensification. Food Technol Biotechnol 49(4):495–501Google Scholar
  23. Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA (2013) The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods 5:5990.  https://doi.org/10.1039/c3ay41125g CrossRefGoogle Scholar
  24. Sandoval-Ventura O, Olguín-Contreras LF, Cañizares-Macías M d P (2017) Total polyphenols content in white wines on a microfluidic flow injection analyzer with embedded optical fibers. Food Chem 221:1062–1068.  https://doi.org/10.1016/j.foodchem.2016.11.055 CrossRefGoogle Scholar
  25. Spietelun A, Marcinkowski Ł, De La Guardia M, Namieśnik J (2014) Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 119:34–45.  https://doi.org/10.1016/j.talanta.2013.10.050 CrossRefGoogle Scholar
  26. Squires TM (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(July):978–1016Google Scholar
  27. Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175.  https://doi.org/10.1016/j.mee.2014.10.013 CrossRefGoogle Scholar
  28. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166.  https://doi.org/10.1103/PhysRevLett.86.4163 CrossRefGoogle Scholar
  29. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M, La Guardia M (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18(1):98–112.  https://doi.org/10.1079/NRR200495 CrossRefGoogle Scholar
  30. Tsaoulidis D, Angeli P (2015) Effect of channel size on mass transfer during liquid-liquid plug flow in small scale extractors. Chem Eng J 262:785–793.  https://doi.org/10.1016/j.cej.2014.10.012 CrossRefGoogle Scholar
  31. Woitalka A, Kuhn S, Jensen KF (2014) Scalability of mass transfer in liquid-liquid flow. Chem Eng Sci 116:1–8.  https://doi.org/10.1016/j.ces.2014.04.036 CrossRefGoogle Scholar
  32. Zaouk R, Park BY, Madou MJ (2006a) Fabrication of polydimethylsiloxane microfluidics using SU-8 molds. Methods Mol Biol 321:17–21.  https://doi.org/10.1385/1-59259-997-4:17 Google Scholar
  33. Zaouk R, Zaouk R, Park BY, Park BY, Madou MJ, Madou MJ (2006b) Introduction to microfabrication techniques. Methods Mol Biol 321:5–15.  https://doi.org/10.1385/1-59259-997-4:3 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kenia Chávez Ramos
    • 1
  • Luis Fernando Olguín Contreras
    • 2
  • María del Pilar Cañizares Macías
    • 1
    Email author
  1. 1.Departamento de Química Analítica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  2. 2.Laboratorio de Biofisicoquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations