Screening for Green Coffee with Sensorial Defects Due to Aging During Storage by MALDI-ToF Mass Fingerprinting

  • Jhonathan David Pazmiño-Arteaga
  • Alicia Chagolla
  • Cecilia Gallardo-Cabrera
  • Andres Felipe Ruiz-Márquez
  • América Tzitziki González-Rodríguez
  • Martín Orlando Camargo-Escalante
  • Axel Tiessen
  • Robert WinklerEmail author


The sensorial quality of coffee can be impaired by prolonged storage. Aged coffee presents an off-note taste which is called “rested coffee flavor.” This quality reduction is accompanied by changes of the lipid profiles. Therefore, we tested the suitability of MALDI-ToF mass fingerprinting to discriminate between unrested (“fresh”) and rested Colombian Arabica (Coffea arabica) coffee samples. The samples represented different varieties, geographic regions, and processing. With an optimized sample preparation and data processing protocol, we obtained informative mass profiles of coffee oil. Principal component analysis (PCA) was insufficient to classify between unrested and rested samples. Thus, we developed a Random Forest model, which demonstrated a specificity of 72% to detect rested coffee across different days of sample analysis. For individual measurement days, 85–92% specificities were obtained. The high throughput of MALDI-ToF mass fingerprinting enables the broad screening of green coffee materials for quality monitoring and shelf-life studies.


Coffee quality Mass fingerprinting MALDI-ToF Data mining 



We thank M.Sc. Josaphat Miguel Montero Vargas, Dr. Teresa Maria Teresa Carrillo Rayas, and Maria Isabel Cristina Elizarraraz Anaya for advice and excellent technical assistance.

Funding Information

The project was funded by COLCIENCIAS and national PhD sholarships 727-2016, the CONACyT Fronteras project 2015-2/814, the bilateral grant CONACyT-DFG 2016/277850, and PlanTECC. ATGR and MOCE were supported by CONACyT postgraduate scholarships.

Compliance with Ethical Standards

Conflict of Interest

None of the authors declares a conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.


  1. Ayorinde FO, Eribo BE, Balan KV, Johnson JH, Wan LW (1999) Determination of major triacylglycerol components of polyunsaturated specialty oils using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13(10):937–942.<937::AID-RCM590>3.0.CO;2-T CrossRefGoogle Scholar
  2. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. CrossRefGoogle Scholar
  3. Chapagain BP, Wiesman Z (2009) MALDI-TOF/MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev Desert. J Agric Food Chem 57(4):1135–1142. CrossRefGoogle Scholar
  4. Dussert S, Davey MW, Laffargue A, Doulbeau S, Swennen R, Etienne H (2006) Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiol Plantarum 127 (2):192–204. CrossRefGoogle Scholar
  5. Flament I, Bessière-Thomas Y (2002) Coffee flavor chemistry. Wiley, New York. google-Books-ID: NQi1LYJxFvUCGoogle Scholar
  6. Gamboa-Becerra R, Montero-Vargas JM, Martínez-Jarquín S, Gálvez-Ponce E, Moreno-Pedraza A, Winkler R (2017) Rapid classification of coffee products by data mining models from direct electrospray and plasma-based mass spectrometry analyses. Food Anal Methods 10(5):1359–1368. CrossRefGoogle Scholar
  7. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28(17):2270–2271. CrossRefGoogle Scholar
  8. Jham GN, Velikova R, Vidal Muller H, Nikolova-Damyanova B, Cecon PR (2001) Lipid classes and triacylglycerols in coffee samples from Brazil: effects of coffee type and drying procedures. Food Res Int 34(2):111–115. CrossRefGoogle Scholar
  9. Jham GN, Nikolova-Damyavova B, Viera M, Natalino R, Rodrigues AC (2003) Determination of the triacylglycerol composition of coffee beans by reverse-phase high-performance liquid chromatography. Phytochem Anal 14(5):310–314. CrossRefGoogle Scholar
  10. Kaufman M, Wiesman Z (2007) Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J Agric Food Chem 55(25):10405–10413. CrossRefGoogle Scholar
  11. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. CrossRefGoogle Scholar
  12. Kubo A, Satoh T, Itoh Y, Hashimoto M, Tamura J, Cody RB (2013) Structural analysis of triacylglycerols by using a MALDI-TOF/TOF system with monoisotopic precursor selection. J Am Soc Mass Spectrom 24(5):684–689. CrossRefGoogle Scholar
  13. Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z, Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z (2014) Mass spectrometry methodology in lipid analysis. Int J Mol Sci 15(6):10492–10507. CrossRefGoogle Scholar
  14. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22. Google Scholar
  15. Martínez-Jarquín S, Moreno-Pedraza A, Cázarez-García D, Winkler R (2017) Automated chemical fingerprinting of Mexican spirits derived from Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Anal Methods 9 (34):5023–5028. CrossRefGoogle Scholar
  16. Montero-Vargas JM, González-González L H, Gálvez-Ponce E, Ramírez-Chávez E, Molina-Torres J, Chagolla A, Montagnon C, Winkler R (2013) Metabolic phenotyping for the classification of coffee trees and the exploration of selection markers. Mol BioSystems 9(4):693–699. CrossRefGoogle Scholar
  17. Murkovic M, Derler K (2006) Analysis of amino acids and carbohydrates in green coffee. J Biochem Biophys Methods 69(1):25–32. CrossRefGoogle Scholar
  18. Nikolova-Damyanova B, Velikova R, Jham GN (1998) Lipid classes, fatty acid composition and triacylglycerol molecular species in crude coffee beans harvested in Brazil. Food Res Int 31(6):479–486. CrossRefGoogle Scholar
  19. Patui S, Clincon L, Peresson C, Zancani M, Conte L, Del Terra L, Navarini L, Vianello A, Braidot E (2014) Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. Plant Sci 219–220:19–25. CrossRefGoogle Scholar
  20. Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47(6):485–490. CrossRefGoogle Scholar
  21. Rendón MY, de Jesus Garcia Salva T, Bragagnolo N (2014) Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chem 147:279–286. CrossRefGoogle Scholar
  22. Scheidig C, Czerny M, Schieberle P (2007) Changes in key odorants of raw coffee beans during storage under defined conditions. J Agric Food Chem 55(14):5768–5775. CrossRefGoogle Scholar
  23. Selmar D, Bytof G, Knopp SE (2008) The Storage of Green Coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors. Ann Bot 101(1):31–38. CrossRefGoogle Scholar
  24. Shibamoto T (2015) Volatile chemicals from thermal degradation of less volatile coffee components. In: Preedy V (ed) Coffee in health and disease prevention, Elsevier edn. Academic Press, San Diego, pp 129–135Google Scholar
  25. Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Braz J Plant Physiol 18(1):201–216. CrossRefGoogle Scholar
  26. Winkler R (2015) An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. PeerJ 3(e1401):1–34. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jhonathan David Pazmiño-Arteaga
    • 1
  • Alicia Chagolla
    • 2
  • Cecilia Gallardo-Cabrera
    • 1
  • Andres Felipe Ruiz-Márquez
    • 3
  • América Tzitziki González-Rodríguez
    • 2
  • Martín Orlando Camargo-Escalante
    • 2
  • Axel Tiessen
    • 2
  • Robert Winkler
    • 2
    • 4
    Email author
  1. 1.Facultad de Ciencias Farmacéuticas y Alimentarias, Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos GEMCAUniversidad de AntioquiaMedellín-AntioquiaColombia
  2. 2.CINVESTAV IrapuatoIrapuato Gto.Mexico
  3. 3.Grupo de Investigación La SaladaServicio Nacional de Aprendizaje SENACaldas-AntioquiaColombia
  4. 4.Mass Spectrometry GroupMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations