Rapid Food Product Analysis by Surface Acoustic Wave Nebulization Coupled Mass Spectrometry

  • Thomas Schneider
  • Benjamin L. Oyler
  • Sung Hwan Yoon
  • Tao Liang
  • Gloria S. Yen
  • David P. A. Kilgour
  • Erik Nilsson
  • David R. Goodlett


Rapid food product analysis is of great interest for quality control and assurance during the production process. Conventional quality control protocols require time and labor-intensive sample preparation for analysis by state-of-the-art analytical methods. To reduce overall cost and facilitate rapid qualitative assessments, food products need to be tested with minimal sample preparation. We present a novel and simple method for assessing food product compositions by mass spectrometry using a novel surface acoustic wave nebulization method. This method provides significant advantages over conventional methods requiring no pumps, capillaries, or additional chemicals to enhance ionization for mass spectrometric analysis. In addition, the surface acoustic wave nebulization–mass spectrometry method is ideal for rapid analysis and to investigate certain compounds by using the mass spectra as a type of species-specific fingerprint analysis. We present for the first time surface acoustic wave nebulization-generated mass spectra of a variety of fermented food products from a small selection of vinegars, wines, and beers.


Mass spectrometry Surface acoustic wave nebulization Vinegar, wine, and beer analysis 


Compliance with Ethical Standards

Conflict of Interest

Thomas Schneider declares that he has no conflict of interest. David P. A. Kilgour declares that he has no conflict of interest. Erik Nilsson declares that he has no conflict of interest. David R. Goodlett has financial interests in Deurion LLC.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Supplementary material

12161_2018_1232_MOESM1_ESM.docx (10 mb)
ESM 1 (DOCX 10191 kb)


  1. Amorisco A, Locaputo V, Pastore C, Mascolo G (2012) Identification of low molecular weight organic acids by ion chromatography/hybrid quadrupole time-of-flight mass spectrometry during Uniblu-A ozonation. Rapid Commun Mass Spectrom 27:187–199.  https://doi.org/10.1002/rcm.6429 CrossRefGoogle Scholar
  2. Araújo AS, da Rocha LL, Tomazela DM, Sawaya ACHF, Almeida RR, Catharino RR, Eberlin MN (2005) Electrospray ionization mass spectrometry fingerprinting of beer. Analyst 130:884–889.  https://doi.org/10.1039/b415252b CrossRefGoogle Scholar
  3. Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer-Verlag, BerlinGoogle Scholar
  4. Bravdo B, Hepner Y, Loinger C et al (1985) Effect of crop level and crop load on growth, yield, must and wine composition, and quality of cabernet sauvignon. Am J Enol Vitic 36:125–131Google Scholar
  5. Cajka T, Riddellova K, Tomaniova M, Hajslova J (2011) Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: a powerful tool for beer origin recognition. Metabolomics 7:500–508.  https://doi.org/10.1007/s11306-010-0266-z CrossRefGoogle Scholar
  6. Campbell CK (1989) Applications of surface acoustic and shallow bulk acoustic wave devices. Proc IEEE 77:1453–1484.  https://doi.org/10.1109/5.40664 CrossRefGoogle Scholar
  7. Canterbury JD, Merrihew GE, MacCoss MJ et al (2014) Comparison of data acquisition strategies on quadrupole ion trap instrumentation for shotgun proteomics. J Am Soc Mass Spectrom 25:2048–2059.  https://doi.org/10.1007/s13361-014-0981-1 CrossRefGoogle Scholar
  8. Chinnici F, Guerrero ED, Sonni F et al (2009) Gas chromatography-mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected European geographical indication. J Agric Food Chem 57:4784–4792.  https://doi.org/10.1021/jf804005w CrossRefGoogle Scholar
  9. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, Goodlett DR, Ernst RK, Darveau RP (2009) Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4’-phosphatase activities. Cell Microbiol 11:1587–1599.  https://doi.org/10.1111/j.1462-5822.2009.01349.x CrossRefGoogle Scholar
  10. Cody RB, Laramee JA, Durst HD et al (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302.  https://doi.org/10.1021/ac050162j CrossRefGoogle Scholar
  11. Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68:31–37.  https://doi.org/10.1021/ac9507956 CrossRefGoogle Scholar
  12. Costin JW, Barnett NW, Lewis SW (2004) Determination of proline in wine using flow injection analysis with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection. Talanta 64:894–898.  https://doi.org/10.1016/j.talanta.2004.03.065 CrossRefGoogle Scholar
  13. Dill AL, Eberlin LS, Ifa DR, Cooks RG (2011) Perspectives in imaging using mass spectrometry. Chem Commun (Camb) 47:2741–2746.  https://doi.org/10.1039/c0cc03518a CrossRefGoogle Scholar
  14. Duarte IF, Barros A, Almeida C, Spraul M, Gil AM (2004) Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer. J Agric Food Chem 52:1031–1038.  https://doi.org/10.1021/jf030659z CrossRefGoogle Scholar
  15. Felipe D, Brambilla L, Porto C, Pilau E, Cortez D (2014) Phytochemical analysis of Pfaffia glomerata inflorescences by LC-ESI-MS/MS. Molecules 19:15720–15734.  https://doi.org/10.3390/molecules191015720 CrossRefGoogle Scholar
  16. Flamini R, Traldi P (2010) Mass spectrometry in grape and wine chemistry. John Wiley & Sons, Inc., HobokenGoogle Scholar
  17. Frangne N, Eggmann T, Koblischke C, Weissenbock G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Plant Physiol 128:726–733.  https://doi.org/10.1104/pp.010590 CrossRefGoogle Scholar
  18. Garcia-Reyes JF, Jackson AU, Molina-Diaz A, Cooks RG (2009) Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Anal Chem 81:820–829.  https://doi.org/10.1021/ac802166v CrossRefGoogle Scholar
  19. García-Villalba R, Cortacero-Ramírez S, Segura-Carretero A, Martín-Lagos Contreras JA, Fernández-Gutiérrez A (2006) Analysis of hop acids and their oxidized derivatives and iso-α-acids in beer by capillary electrophoresis−electrospray ionization mass spectrometry. J Agric Food Chem 54:5400–5409.  https://doi.org/10.1021/jf060207x CrossRefGoogle Scholar
  20. Heron SR, Wilson R, Shaffer SA, Goodlett DR, Cooper JM (2010) Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Anal Chem 82:3985–3989.  https://doi.org/10.1021/ac100372c CrossRefGoogle Scholar
  21. Ho J, Tan MK, Go DB, Yeo LY, Friend JR, Chang HC (2011) Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry. Anal Chem 83:3260–3266.  https://doi.org/10.1021/ac200380q CrossRefGoogle Scholar
  22. Hofte AJP, Van Der Hoeven RAM (1998) Characterization of hop acids by liquid chromatography with negative electrospray ionization mass spectrometry. J Am Soc Brew Chem 56:118–122.  https://doi.org/10.1094/ASBCJ-56-0118 Google Scholar
  23. Huang Y, Yoon SH, Heron SR, Masselon CD, Edgar JS, Tureček F, Goodlett DR (2012) Surface acoustic wave nebulization produces ions with lower internal energy than electrospray ionization. J Am Soc Mass Spectrom 23:1062–1070.  https://doi.org/10.1007/s13361-012-0352-8 CrossRefGoogle Scholar
  24. Huang Y, Heron SR, Clark A et al (2016) Standing waves improve surface acoustic wave nebulization performance. J Mass Spectrom 51:424–429.  https://doi.org/10.1002/jms.3766 CrossRefGoogle Scholar
  25. Konda C, Bendiak B, Xia Y (2012) Differentiation of the stereochemistry and anomeric configuration for 1-3 linked disaccharides via tandem mass spectrometry and 18O-labeling. J Am Soc Mass Spectrom 23:347–358.  https://doi.org/10.1007/s13361-011-0287-5 CrossRefGoogle Scholar
  26. Lachenmeier DW (2007) Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chem 101:825–832.  https://doi.org/10.1016/j.foodchem.2005.12.032 CrossRefGoogle Scholar
  27. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519.  https://doi.org/10.1007/s00216-008-1911-5 CrossRefGoogle Scholar
  28. Lee S, Valentine SJ, Reilly JP, Clemmer DE (2012) Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int J Mass Spectrom 309:161–167.  https://doi.org/10.1016/j.ijms.2011.09.013 CrossRefGoogle Scholar
  29. Liang T, Schneider T, Yoon SH, et al (2017) Optimized surface acoustic wave nebulization facilitates bacterial phenotypingGoogle Scholar
  30. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106.  https://doi.org/10.1021/ac071181r CrossRefGoogle Scholar
  31. Nicholson JR (2017) 2015: what is made in America. Economics and Statistics Administration (ESA), http://www.esa.doc.gov/reports/2015-what-made-america. Accessed 24 Sept 2017
  32. Nordhoff E, Kirpekar F, Roepstorff P (1996) Mass spectrometry of nucleic acids. Mass Spectrom Rev 15:67–138.  https://doi.org/10.1002/(sici)1098-2787(1996)15:2<67::aid-mas1>3.0.co;2-8 CrossRefGoogle Scholar
  33. Ough C (1968) Proline content of grapes and wines. Vitis 7:321–331Google Scholar
  34. Peppard TL (1985) The application of mass spectrometry in beer flavour studies. J Inst Brew 91:16–24.  https://doi.org/10.1002/j.2050-0416.1985.tb04299.x CrossRefGoogle Scholar
  35. Perez-Magarino S, Revilla I, Gonzalez-SanJose ML, Beltran S (1999) Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. J Chromatogr A 847:75–81.  https://doi.org/10.1016/S0021-9673(99)00255-1 CrossRefGoogle Scholar
  36. Phillips KM, Patterson KY, Rasor AS, Exler J, Haytowitz DB, Holden JM, Pehrsson PR (2006) Quality-control materials in the USDA National Food and Nutrient Analysis Program (NFNAP). Anal Bioanal Chem 384:1341–1355.  https://doi.org/10.1007/s00216-005-0294-0 CrossRefGoogle Scholar
  37. Quifer-Rada P, Vallverdú-Queralt A, Martínez-Huélamo M, Chiva-Blanch G, Jáuregui O, Estruch R, Lamuela-Raventós R (2015) A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem 169:336–343.  https://doi.org/10.1016/j.foodchem.2014.07.154 CrossRefGoogle Scholar
  38. Quinde-Axtell Z, Baik BK (2006) Phenolic compounds of barley grain and their implication in food product discoloration. J Agric Food Chem 54:9978–9984.  https://doi.org/10.1021/jf060974w CrossRefGoogle Scholar
  39. Schäfer K-C, Dénes J, Albrecht K, Szaniszló T, Balog J, Skoumal R, Katona M, Tóth M, Balogh L, Takáts Z (2009) In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew Chem Int Ed 48:8240–8242.  https://doi.org/10.1002/anie.200902546 CrossRefGoogle Scholar
  40. Tagashira M, Watanabe M, Uemitsu N (1995) Antioxidative activity of hop bitter acids and their analogs. Biosci Biotechnol Biochem 59:740–742.  https://doi.org/10.1271/bbb.59.740 CrossRefGoogle Scholar
  41. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473.  https://doi.org/10.1126/science.1104404 CrossRefGoogle Scholar
  42. Tesfaye W, Morales ML, García-Parrilla MC, Troncoso AM (2002) Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci Technol 13:12–21.  https://doi.org/10.1016/S0924-2244(02)00023-7 CrossRefGoogle Scholar
  43. Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 43:1161–1180.  https://doi.org/10.1002/jms.1440 CrossRefGoogle Scholar
  44. Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed Engl 49:877–880.  https://doi.org/10.1002/anie.200906314 CrossRefGoogle Scholar
  45. Yen GS, Edgar JS, Yoon SH, Huang Y, Heron SR, Chiu DT, Goodlett DR (2016) PDMS microchannels coupled to surface acoustic wave nebulization mass spectrometry. Rapid Commun Mass Spectrom 30:1096–1100.  https://doi.org/10.1002/rcm.7531 CrossRefGoogle Scholar
  46. Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46:379–406.  https://doi.org/10.1146/annurev-fluid-010313-141418 CrossRefGoogle Scholar
  47. Yoon SH, Huang Y, Edgar JS, Ting YS, Heron SR, Kao Y, Li Y, Masselon CD, Ernst RK, Goodlett DR (2012) Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis. Anal Chem 84:6530–6537.  https://doi.org/10.1021/ac300807p CrossRefGoogle Scholar
  48. Yoon SH, Liang T, Schneider T, Oyler BL, Chandler CE, Ernst RK, Yen GS, Huang Y, Nilsson E, Goodlett DR (2016) Rapid lipid a structure determination via surface acoustic wave nebulization and hierarchical tandem mass spectrometry algorithm. Rapid Commun Mass Spectrom 30:2555–2560CrossRefGoogle Scholar
  49. Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, Giese N, Yu W, Nagi C, Suliburk J, Liu J, Bensussan A, DeHoog RJ, Garza KY, Ludolph B, Sorace AG, Syed A, Zahedivash A, Milner TE, Eberlin LS (2017) Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aan3968 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Schneider
    • 1
  • Benjamin L. Oyler
    • 2
  • Sung Hwan Yoon
    • 3
  • Tao Liang
    • 1
  • Gloria S. Yen
    • 4
  • David P. A. Kilgour
    • 5
  • Erik Nilsson
    • 4
  • David R. Goodlett
    • 1
    • 4
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA
  2. 2.Department of Toxicology, School of MedicineUniversity of MarylandBaltimoreUSA
  3. 3.Department of Microbial Pathogenesis, School of DentistryUniversity of MarylandBaltimoreUSA
  4. 4.Deurion LLCSeattleUSA
  5. 5.Chemistry and Forensics, School of Science & TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations