Food Analytical Methods

, Volume 11, Issue 1, pp 128–147 | Cite as

Melamine Detection in Milk and Dairy Products: Traditional Analytical Methods and Recent Developments

  • Mena Ritota
  • Pamela Manzi


Melamine is a nitrogen-rich compound (about 66%) whose fraudulent addition to foods aims to increase the apparent protein content. In 2008, melamine adulteration incidents occurred in China caused several deaths in humans from kidney failure and other health problems. This issue prompted private as well as governmental laboratories to develop several analytical methods in order to determine melamine in foods. This review aims to provide an overview of the analytical techniques currently available in the literature for melamine detection and measurement in milk and dairy products, including a specific section related to sample preparation. Recent studies concerning conventional (both screening and confirmatory) methods are reported, and technical and critical issues are discussed for each technique (liquid and gas chromatography, mass spectrometry, liquid chromatography coupled to mass spectrometry, gas chromatography coupled to mass spectrometry, and capillary electrophoresis). These techniques, very sensitive and specific but also time-consuming, may require tedious sample preparation, costly instrumentation, and skilled personnel. Therefore, new innovative detection methods are also provided, focusing attention on immunoassay, sensor technology, vibrational spectroscopy coupled to chemometrics, hyperspectral imaging, micellar liquid chromatography, magnetic resonance spectroscopy, and chemiluminescence.


Melamine Analytical techniques Milk Dairy products Screening and confirmatory methods 



This research was financially supported by the Italian Ministry “Ministero delle Politiche Agricole, Alimentari e Forestali (MiPAAF)” within the project “Strumenti di supporto per la valutazione del rischio di frodi nel sistema agroalimentare” (DD.M.M. n.24267 17/10/2010 and n.13973 16/05/2012).

Compliance with Ethical Standards

Conflict of Interest

Mena Ritota declares that he has no conflict of interest. Pamela Manzi declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable


  1. Ahmad SA et al (2016) Quantitation and risk assessment of chemical adulterants in milk using UHPLC coupled to photodiode array and differential refractive index detectors. Food Anal Methods 9:3367–3376. doi: 10.1007/s12161-016-0534-2 CrossRefGoogle Scholar
  2. AOAC (2005) Association of Official Analytical Chemists, Official methods of analysis, 17th edn. AOAC International, GaithersburgGoogle Scholar
  3. AQSIQ, SAC (2008a) General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. GB/T 22400–2008. Rapid determination of melamine in raw milk – High performance liquid chromatography method. Chinese StandardsGoogle Scholar
  4. AQSIQ, SAC (2008b) General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. GB/T 22388–2008. Determination of melamine in raw milk and dairy products. Chinese StandardsGoogle Scholar
  5. Balabin RM, Smirnov SV (2011) Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta 85:562–568. doi: 10.1016/j.talanta.2011.04.026 CrossRefGoogle Scholar
  6. Bath R, Gomez-Lopez VM (2014) Practical food safety: contemporary issues and future directions. Wiley, ChichesterGoogle Scholar
  7. Borase HP, Patil CD, Salunkhe RB, Suryawanshi RK, Salunke BK, Patil SV (2015) Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk. Biotechnol Appl Biochem 62:652–662. doi: 10.1002/bab.1306 CrossRefGoogle Scholar
  8. Cao B, Yang H, Song J, Chang H, Li S, Deng A (2013) Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples. Talanta 116:173–180. doi: 10.1016/j.talanta.2013.05.009 CrossRefGoogle Scholar
  9. Chen D, Zhao Y, Miao H, Wu Y (2015) A novel dispersive micro solid phase extraction using PCX as the sorbent for the determination of melamine and cyromazine in milk and milk powder by UHPLC-HRMS/MS. Talanta 134:144–152. doi: 10.1016/j.talanta.2014.10.036 CrossRefGoogle Scholar
  10. Chen Z, Yan X (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J Agric Food Chem 57:8742–8747. doi: 10.1021/jf9021916 CrossRefGoogle Scholar
  11. Choi J, Kim Y, Lee J (2010) Rapid quantification of melamine in milk using competitive 1,1′-oxalyldiimidazole chemiluminescent enzyme immunoassay. Analyst 135:2445–2450. doi: 10.1039/c0an00396d CrossRefGoogle Scholar
  12. Demirhan BE, Demirhan B, Satana Kara HE (2015) Room-temperature phosphorescence determination of melamine in dairy products using L-cysteine-capped Mn-doped zinc sulfide (ZnS) quantum dots. J Dairy Sci 98:2992–3000. doi: 10.3168/jds.2014-9221 CrossRefGoogle Scholar
  13. Deng J, Ju S, Liu Y, Xiao N, Xie J, Zhao H (2015) Highly sensitive and selective determination of melamine in milk using glassy carbon electrode modified with molecularly imprinted copolymer. Food Anal Methods 8:2437–2446. doi: 10.1007/s12161-015-0134-6 CrossRefGoogle Scholar
  14. Deng X et al (2010) A novel mixed-mode solid phase extraction for simultaneous determination of melamine and cyanuric acid in food by hydrophilic interaction chromatography coupled to tandem mass chromatography. J Chromatogr B 878:2839–2844. doi: 10.1016/j.jchromb.2010.08.038 CrossRefGoogle Scholar
  15. Ding N, Yan N, Ren C, Chen X (2010) Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles−H2O2−ABTS detection system. Anal Chem 82:5897–5899. doi: 10.1021/ac100597s CrossRefGoogle Scholar
  16. Domingo E, Tirelli AA, Nunes CA, Guerreiro MC, Pinto SM (2014) Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: a review. Food Res Int 60:131–139. doi: 10.1016/j.foodres.2013.11.006 CrossRefGoogle Scholar
  17. Domingo EC, Tireli AA, Nunes CA, Batista AV, Guerreiro MC, Pinto SM (2015) Rapid extraction of melamine in powdered milk for direct electrospray ionization tandem mass spectrometry analysis. Talanta 132:535–540. doi: 10.1016/j.talanta.2014.10.003 CrossRefGoogle Scholar
  18. EFSA (2010) Scientific opinion on melamine in food and feed. EFSA J 8:Article 1573CrossRefGoogle Scholar
  19. FAO (2010) Food and Agriculture Organization of the United Nations, International Experts Limit Melamine Levels in FoodGoogle Scholar
  20. FAO (2012) Food and Agriculture Organization of the United Nations, Codex Committee on Contaminants in Foods - Draft maximum levels for melamine in food (liquid infant formula)Google Scholar
  21. Filazi A, Sireli UT, Ekici H, Can HY, Karagoz A (2012) Determination of melamine in milk and dairy products by high performance liquid chromatography. J Dairy Sci 95:602–608. doi: 10.3168/jds.2011-4926 CrossRefGoogle Scholar
  22. Finete VLM, Gouvêa MM, Marques FFC, Netto ADP (2015) Validation of a method of high performance liquid chromatography with fluorescence detection for melamine determination in UHT whole bovine milk. Food Control 51:402–407. doi: 10.1016/j.foodcont.2014.12.001 CrossRefGoogle Scholar
  23. Fodey TL, Thompson CS, Traynor IM, Haughey SA, Glenn Kennedy D, Crooks SRH (2011) Development of an optical biosensor based immunoassay to screen infant formula milk samples for adulteration with melamine. Anal Chem 83:5012–5016. doi: 10.1021/ac200926e CrossRefGoogle Scholar
  24. Fu X et al (2014) Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses. J Food Eng 124:97–104. doi: 10.1016/j.jfoodeng.2013.09.023 CrossRefGoogle Scholar
  25. Ge X, Wu X, Wang J, Liang S, Sun H (2015) Highly sensitive determination of cyromazine, melamine, and their metabolites in milk by molecularly imprinted solid-phase extraction combined with ultra-performance liquid chromatography. J Dairy Sci 98:2161–2171. doi: 10.3168/jds.2014-8793 CrossRefGoogle Scholar
  26. Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossi AM (2014) Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem 159:250–256. doi: 10.1016/j.foodchem.2014.03.013 CrossRefGoogle Scholar
  27. Gu C, Lan T, Shi H, Lu Y (2015) Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer. Anal Chem (Washington) 87:7676–7682. doi: 10.1021/acs.analchem.5b01085 CrossRefGoogle Scholar
  28. Gu C, Xiang Y, Guo H, Shi H (2016) Label-free fluorescence detection of melamine with a truncated aptamer. Analyst 141:4511–4517. doi: 10.1039/c6an00537c CrossRefGoogle Scholar
  29. Hau K, Kwan T, Li K (2009) Melamine toxicity and the kidney. J Am Soc Nephrol 20:245–250. doi: 10.1681/ASN.2008101065 CrossRefGoogle Scholar
  30. Hilding-Ohlsson A, Fauerbach JA, Sacco NJ, Bonetto MC, Cortón E (2012) Voltamperometric Discrimination of Urea and Melamine Adulterated Skimmed Milk Powder. Sensors 12:12220–12234CrossRefGoogle Scholar
  31. Huang G, Ouyang Z, Cooks RG (2009) High-throughput trace melamine analysis in complex mixtures. Chem Commun (Cambridge, U K):556–558. doi: 10.1039/B818059H
  32. Huang G, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG (2010a) Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst 135:705–711. doi: 10.1039/b923427f CrossRefGoogle Scholar
  33. Huang M et al (2016) Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio. J Food Eng 181:10–19. doi: 10.1016/j.jfoodeng.2016.02.017 CrossRefGoogle Scholar
  34. Huang W, Liu X (2010b) Determination of melamine in dairy products by hydrophilic interaction liquid chromatography. Mod Prev Med 37:1341–1343. doi: 10.1007/s12161-011-9350-x Google Scholar
  35. Huang Y, Tian K, Min S, Xiong Y, Du G (2015) Distribution assessment and quantification of counterfeit melamine in powdered milk by NIR imaging methods. Food Chem 177:174–181. doi: 10.1016/j.foodchem.2015.01.029 CrossRefGoogle Scholar
  36. International Organization for Standardization (2010) ISO/TS 15495 | IDF/RM 230:2010(E) Milk, milk products and infant formulae—guideline for the quantitative determination of melamine and cyanuric acid by LC-MS/MS. Geneva, SwitzerlandGoogle Scholar
  37. Jawaid S, Talpur FN, Afridi HI, Nizamani SM, Khaskheli AA, Saba N (2014) Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy. Anal Methods 6:5269–5273. doi: 10.1039/C4AY00558A CrossRefGoogle Scholar
  38. Jawaid S, Talpur FN, Sherazi STH, Nizamani SM, Khaskheli AA (2013) Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Food Chem 141:3066–3071. doi: 10.1016/j.foodchem.2013.05.106 CrossRefGoogle Scholar
  39. Jeong W-I et al (2006) Canine renal failure syndrome in three dogs. J Vet Sci 7:299–301. doi: 10.4142/jvs.2006.7.3.299 CrossRefGoogle Scholar
  40. Ji Y, Chen X, Zhang Z, Li J, Xie T (2014) Efficient sample clean-up and online preconcentration for sensitive determination of melamine in milk samples by capillary electrophoresis with contactless conductivity detection. J Sep Sci 37:3000–3006. doi: 10.1002/jssc.201400360 CrossRefGoogle Scholar
  41. Jin Y, Meng L, Li M, Zhu Z (2010) Highly sensitive detection of melamine and its derivatives by capillary electrophoresis coupled with online preconcentration techniques. Electrophoresis 31:3913–3920. doi: 10.1002/elps.201000329 CrossRefGoogle Scholar
  42. Kong Y et al. (2014) Stacking and analysis of melamine in milk products with acetonitrile-salt stacking technique in capillary electrophoresis. J Anal Methods Chem 2014:Article ID 212697, 212696 pages doi: 10.1155/2014/212697
  43. Lachenmeier DW, Humpfer E, Fang F, Schütz B, Dvortsak P, Sproll C, Spraul M (2009) NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine. J Agric Food Chem 57:7194–7199. doi: 10.1021/jf902038j CrossRefGoogle Scholar
  44. Lei H et al (2011) Development of a specifically enhanced enzyme-linked immunosorbent assay for the detection of melamine in milk. Molecules 16:5591–5603. doi: 10.3390/molecules16075591 CrossRefGoogle Scholar
  45. Li J, Qi H, Shi Y (2009) Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1216:5467–5471. doi: 10.1016/j.chroma.2009.05.047 CrossRefGoogle Scholar
  46. Li R, Yang G, Yang J, Han J, Liu J, Huang M (2016) Determination of melamine in milk using surface plasma effect of aggregated Au@SiO2 nanoparticles by SERS technique. Food Control 68:14–19. doi: 10.1016/j.foodcont.2016.03.009 CrossRefGoogle Scholar
  47. Li W, Meng M, Lu X, Liu W, Yin W, Liu J, Xi R (2014) Preparation of anti-melamine antibody and development of an indirect chemiluminescent competitive ELISA for melamine detection in milk. Food Agric Immunol 25:498-509 doi: 10.1080/09540105.2013.847063
  48. Li X et al (2013) An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes. Anal Chim Acta 802:82–88. doi: 10.1016/j.aca.2013.09.042 CrossRefGoogle Scholar
  49. Lim J et al (2016) Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model. Talanta 151:183–191. doi: 10.1016/j.talanta.2016.01.035 CrossRefGoogle Scholar
  50. Litzau JJ, Mercer GE, Mulligan KJ (2008) GC-MS screen for the presence of melamine, ammeline, ammelide, and cyanuric acid. US FDA Laboratory Information Bulletin LIB no 4423Google Scholar
  51. Liu H et al (2016) Rapid enrichment and high-sensitivity detection of melamine from milk with immunomagnetic microspheres. Academia. J Agric Res 4:134–139. doi: 10.15413/ajar.2016.0122 Google Scholar
  52. Lu C, Xiang B, Hao G, Xu J, Wang Z, Chen C (2009) Rapid detection of melamine in milk powder by near infrared spectroscopy. J Near Infrared Spectrosc 17:59–67. doi: 10.15413/ajar.2016.0122 CrossRefGoogle Scholar
  53. Lu Y, Xia Y, Pan M, Wang X, Wang S (2014) Development of a surface plasmon resonance immunosensor for detecting melamine in milk products and pet foods. J Agric Food Chem 62:12471–12476. doi: 10.1021/jf504055g CrossRefGoogle Scholar
  54. Lutter P et al (2011) Screening and confirmatory methods for the determination of melamine in cow's milk and milk-based powdered infant formula: validation and proficiency-tests of ELISA, HPLC-UV, GC-MS and LC-MS/MS. Food Control 22:903–913. doi: 10.1016/j.foodcont.2010.11.022 CrossRefGoogle Scholar
  55. Ma P et al (2013) Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchim Acta 180:1173–1180. doi: 10.1007/s00604-013-1059-7 CrossRefGoogle Scholar
  56. Mecker LC, Tyner KM, Kauffman JF, Arzhantsev S, Mans DJ, Gryniewicz-Ruzicka CM (2012) Selective melamine detection in multiple sample matrices with a portable raman instrument using surface enhanced Raman spectroscopy-active gold nanoparticles. Anal Chim Acta 733:48–55. doi: 10.1016/j.aca.2012.05.001 CrossRefGoogle Scholar
  57. Miao H et al (2009) Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed Environ Sci 22:87–94. doi: 10.1016/S0895-3988(09)60027-1 CrossRefGoogle Scholar
  58. Nieuwoudt MK, Holroyd SE, McGoverin CM, Simpson MC, Williams DE (2016a) Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. J Dairy Sci 99:2520–2536. doi: 10.3168/jds.2015-10342 CrossRefGoogle Scholar
  59. Nieuwoudt MK, Holroyd SE, McGoverin CM, Simpson MC, Williams DE (2016b) Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well. J Dairy Sci 99:7821–7831. doi: 10.3168/jds.2016-11100 CrossRefGoogle Scholar
  60. Pan X, Wu P, Yang D, Wang L, Shen X, Zhu C (2013) Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC-MS. Food Control 30:545–548. doi: 10.1016/j.foodcont.2012.06.045 CrossRefGoogle Scholar
  61. Peng J, Feng Y, Han X, Gao Z (2016) Sensitive electrochemical detection of melamine based on gold nanoparticles deposited on a graphene doped carbon paste electrode. Anal Methods 8:2526–2532. doi: 10.1039/C6AY00287K CrossRefGoogle Scholar
  62. Peris-Vicente J, Albiol-Chiva J, Roca-Genovés P, Esteve-Romero J (2016) Advances on melamine determination by micellar liquid chromatography: a review. J Liq Chromatogr Relat Technol 39:325–338. doi: 10.1080/10826076.2016.1152482 CrossRefGoogle Scholar
  63. Rajapandiyan P, Tang W, Yang J (2015) Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. Food Control 56:155–160. doi: 10.1016/j.foodcont.2015.03.028 CrossRefGoogle Scholar
  64. Rambla-Alegre M, Peris-Vicente J, Marco-Peiró S, Beltrán-Martinavarro B, Esteve-Romero J (2010) Development of an analytical methodology to quantify melamine in milk using micellar liquid chromatography and validation according to EU Regulation 2002/654/EC. Talanta 81:894–900. doi: 10.1016/j.talanta.2010.01.034 CrossRefGoogle Scholar
  65. Rani R, Sharad M, Manmohan S (2015) HPTLC-MS analysis of melamine in milk: standardization and validation. Dairy Sci Technol 95:257–263. doi: 10.1007/s13594-014-0204-3 CrossRefGoogle Scholar
  66. Rezai M, Akbari-Adergani B, Shekarchi M (2014) Sensitive detection of melamine in infant milk and coffee mate by a buffer mediated extraction and HPLC-PDA analytical method. J Chem Health Risks 4:45–54Google Scholar
  67. Rovina K, Siddiquee S (2015) A review of recent advances in melamine detection techniques. J Food Compos Anal 43:25–38. doi: 10.1016/j.jfca.2015.04.008 CrossRefGoogle Scholar
  68. Rovina K, Siddiquee S (2016) Electrochemical sensor based rapid determination of melamine using ionic liquid/zinc oxide nanoparticles/chitosan/gold electrode. Food Control 59:801–808. doi: 10.1016/j.foodcont.2015.07.009 CrossRefGoogle Scholar
  69. Smoker M, Krynitsky AJ (2008) Interim method for determination of melamine and cyanuric acid residues in foods using LC-MS/MS: version 1.0. US FDA Laboratory Information Bulletin LIB no. 4422Google Scholar
  70. Stine CB et al (2014) Reproductive toxicity in rats with crystal nephropathy following high doses of oral melamine or cyanuric acid. Food Chem Toxicol 68:142–153. doi: 10.1016/j.fct.2014.02.029 CrossRefGoogle Scholar
  71. Su X et al (2013) Modified SBA-15 matrices for high-throughput screening of melamine in milk samples by MALDI-TOF MS. Int J Mass Spectrom 338:39–44. doi: 10.1016/j.ijms.2012.11.006 CrossRefGoogle Scholar
  72. Sun F et al (2010a) Analytical methods and recent developments in the detection of melamine. TrAC Trends Anal Chem 29:1239–1249. doi: 10.1016/j.trac.2010.06.011 CrossRefGoogle Scholar
  73. Sun H, Liu N, Wang L, He P (2010b) Determination of melamine residue in liquid milk by capillary electrophoresis with solid-phase extraction. J Chromatogr Sci 48:848–853CrossRefGoogle Scholar
  74. Sun F, Liu L, Kuang H, Xu C (2013) Development of ELISA for melamine detection in milk powder. Food Agric Immunol 24:79-86 doi: 10.1080/09540105.2011.641170
  75. Tittlemier SA, Lau BPY., Ménard C, Corrigan C, Sparling M, Gaertner D, Pepper K, Feeley M (2009) Melamine in Infant Formula Sold in Canada: Occurrence and Risk Assessment. J Agric Food Chem 57:5340–5344 doi: 10.1021/jf9005609
  76. Tran BN, Okoniewski R, Storm R, Jansing R, Aldous KM (2010) Use of methanol for the efficient extraction and analysis of melamine and cyanuric acid residues in dairy products and pet foods. J Agric Food Chem 58:101–107. doi: 10.1021/jf903040z CrossRefGoogle Scholar
  77. Tsoi T, Wong W (2015) A simple, highly sensitive, high throughput and organic solvent-free screening method for melamine by microsphere-based flow cytometry immunoassay. Anal Methods 7:5989–5995. doi: 10.1039/C5AY00648A CrossRefGoogle Scholar
  78. Turnipseed S, Casey C, Nochetto C, Heller D (2008) Determination of melamine and cyanuric acid residues in infant formula using LC-MS/MS. US FDA Laboratory Information Bulletin LIB no. 4421Google Scholar
  79. Vachirapatama N, Maitresorasun S (2013) Simultaneous determination of melamine, ammelide, ammeline and cyanuric acid in milk products by micellar electrokinetic chromatography. J Food Drug Anal 21:66–72. doi: 10.6227/jfda.2013210108 Google Scholar
  80. Vasimalai N, John SA (2013) Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Biosens Bioelectron 42:267–272. doi: 10.1016/j.bios.2012.10.023 CrossRefGoogle Scholar
  81. Wang Q et al (2011) Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Anal Bioanal Chem 399:2275–2284. doi: 10.1007/s00216-010-4599-2 CrossRefGoogle Scholar
  82. Wang T et al (2016) Using activated attapulgite as sorbent for solid-phase extraction of melamine in milk formula samples. Anal Bioanal Chem 408:6671–6677. doi: 10.1007/s00216-016-9779-2 CrossRefGoogle Scholar
  83. Wang Z, Chen D, Gao X, Song Z (2009) Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system. J Agric Food Chem 57:3464–3469. doi: 10.1021/jf900132u CrossRefGoogle Scholar
  84. WHO (2008) Expert meeting to review toxicological aspects of melamine and cyanuric acidGoogle Scholar
  85. WHO (2009) Background Paper on Methods for the Analysis of Melamine and Related Compounds in Foods and Animal Feeds Ottawa, CanadaGoogle Scholar
  86. Wu H, Li H, Chua FZH, Li SFY (2013) Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor. Sensors Actuators B 178:541–546. doi: 10.1016/j.snb.2012.12.089 CrossRefGoogle Scholar
  87. Wu T, Chen H, Lin Z, Tan C (2016) Identification and quantitation of melamine in milk by near-infrared spectroscopy and chemometrics. J Spectrosc 2016:8 pages doi: 10.1155/2016/6184987
  88. Wu Y, Zhang Y (2013) Analytical chemistry, toxicology, epidemiology and health impact assessment of melamine in infant formula: recent progress and developments. Food Chem Toxicol 56:325–335. doi: 10.1016/j.fct.2013.02.044 CrossRefGoogle Scholar
  89. Xia JG, Zhou NY, Liu YJ, Chen B, Wu YN, Yao SZ (2010) Simultaneous determination of melamine and related compounds by capillary zone electrophoresis, Food Control, 21: 912-918 doi: 10.1016/j.foodcon
  90. Xie T, Li P, Yi Z, Liu T, Luo G, He F (2015a) Research on detection results of melamine enzyme-linked immune sorbent assay detection kit in food. J Food Saf Qual 6:1016–1021Google Scholar
  91. Xie W et al (2015b) Simple pretreatment and portable UV-vis spectrum instrument for the rapid detection of melamine in milk products. J Food Qual 38:297–304. doi: 10.1111/jfq.12146 CrossRefGoogle Scholar
  92. Xing H, Wu Y, Zhan S, Zhou P (2013) A rapid colorimetric detection of melamine in raw milk by unmodified gold nanoparticles. Food Anal Methods 6:1441–1447. doi: 10.1007/s12161-013-9562-3 CrossRefGoogle Scholar
  93. Xu X, Ren Y, Zhu Y, Cai Z, Han J, Huang B, Zhu Y (2009) Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal Chim Acta 650:39–43. doi: 10.1016/j.aca.2009.04.026 CrossRefGoogle Scholar
  94. Yan X, Chen Z (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode Array detection. J Agric Food Chem 57:8742–8747. doi: 10.1021/jf9021916 CrossRefGoogle Scholar
  95. Yang R, Liu R, Kexin X (2013) Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares. Food Biosci 2:61–67. doi: 10.1016/j.fbio.2013.04.005 CrossRefGoogle Scholar
  96. Yin RH et al (2016) The effects of melamine on humoral immunity with or without cyanuric acid in mice. Res Vet Sci 105:65–73. doi: 10.1016/j.rvsc.2016.01.016 CrossRefGoogle Scholar
  97. Yun W, Li H, Chen S, Tu D, Xie W, Huang Y (2014) Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238:989–995. doi: 10.1007/s00217-014-2166-3 CrossRefGoogle Scholar
  98. Zhang J, Wu M, Chen D, Song Z (2011) Ultrasensitive determination of melamine in milk products and biological fluids by luminol-hydrogen peroxide chemiluminescence. J Food Compos Anal 24:1038–1042. doi: 10.1016/j.jfca.2010.09.021 CrossRefGoogle Scholar
  99. Zhang Y, Chen L, Zhang C, Liu S, Zhu H, Wang Y (2016) Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis. Talanta 150:375–387. doi: 10.1016/j.talanta.2015.12.054 CrossRefGoogle Scholar
  100. Zhao X, Chen L (2016) Analysis of melamine in milk powder by using a magnetic molecularly imprinted polymer based on carbon nanotubes with ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 39:3775–3781. doi: 10.1002/jssc.201600625 CrossRefGoogle Scholar
  101. Zhou L, Huang J, Yang L, Li L, You T (2014) Enhanced electrochemiluminescence based on Ru(bpy)32+−doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta 824:57–63. doi: 10.1016/j.aca.2014.03.035 CrossRefGoogle Scholar
  102. Zhou Y et al (2012) Monoclonal antibody based inhibition ELISA as a new tool for the analysis of melamine in milk and pet food samples. Food Chem 135:2681–2686. doi: 10.1016/j.foodchem.2012.07.053 CrossRefGoogle Scholar
  103. Zhu L, Gamez G, Chen H, Chingin K, Zenobi R (2009) Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chem Commun (Cambridge, U K):559–561 doi: 10.1039/B818541G
  104. Zhu L, Xu G, Wei F, Yang J, Hu Q (2015) Determination of melamine in powdered milk by molecularly imprinted stir bar sorptive extraction coupled with HPLC. J Colloid Interface Sci 454:8–13. doi: 10.1016/j.jcis.2015.05.008 CrossRefGoogle Scholar
  105. Zhu X et al (2016) A ratiometric nanosensor based on conjugated polyelectrolyte-stabilized AgNPs for ultrasensitive fluorescent and colorimetric sensing of melamine. Talanta 151:68–74. doi: 10.1016/j.talanta.2016.01.012 CrossRefGoogle Scholar
  106. Zhu Y, Zhang Y, Li J, Han Y, Dong G, Zhang H (2011) Determination of melamine in fresh milk by electrochemistry with solid phase microextraction at bismuthyl chloride modified graphite epoxy composite electrode. Am J Anal Chem 2:612–618. doi: 10.4236/ajac.2011.25069 CrossRefGoogle Scholar
  107. Zhuang H, Zhu W, Yao Z, Li M, Zhao Y (2016) SERS-based sensing technique for trace melamine detection—a new method exploring. Talanta 153:186–190. doi: 10.1016/j.talanta.2016.03.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-Centro di ricerca Alimenti e Nutrizione (CREA-AN)RomeItaly

Personalised recommendations