Advertisement

Food Analytical Methods

, Volume 10, Issue 11, pp 3589–3599 | Cite as

Instrumental Texture Parameters as Freshness Indicators in Five Farmed Brazilian Freshwater Fish Species

  • Bruna Leal RodriguesEmail author
  • Marion Pereira da Costa
  • Beatriz da Silva Frasão
  • Flávio Alves da Silva
  • Eliane Teixeira Mársico
  • Thiago da Silveira Alvares
  • Carlos Adam Conte-Junior
Article

Abstract

The aim of this study was to assess the chemical quality and instrumental texture parameters, as well as their relationships, of five Brazilian freshwater fish species stored at 4 °C for 6 days. In general, ammonia, TCA-soluble peptides, and biogenic amine values increased with storage time, attributed to the advance of the deterioration process. Ammonia and TCA-soluble peptide concentrations correlated positively with the increase of putrescine, spermine, and histamine. Putrescine production began during the first days of storage, while cadaverine was produced later. Spermine and spermidine showed variable behavior, increasing and decreasing, respectively. With regard to the instrumental texture parameters, firmness, hardness, and chewiness decreased at the beginning of the storage period, whereas an increase was observed in springiness. All instrumental texture parameters demonstrated high correlations with ammonia and TCA-soluble peptides. The increase in certain biogenic amines (putrescine, cadaverine, and spermine) seems to correlate well with decreases observed in firmness, hardness, and chewiness. In addition, a strong relationship was observed between the initial days of storage and instrumental texture parameters, while a significant correlation between the end of the storage and the chemical quality analyses was verified. Firmness, hardness, chewiness, and cohesiveness were considered parameters with high potential in the evaluation of fish freshness during the first days of storage, whereas the chemical quality analyses and springiness were considered important for later evaluation of fish quality. Therefore, instrumental texture parameters may be used as quality indicators in the evaluation of freshwater fish freshness.

Keywords

Texture analysis Chemical quality Biogenic amines Shelf life Quality indicator Storage 

Notes

Acknowledgements

The authors would like to thank the Foundation for Support of Research in the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro-grant E-26/201.185/2014, FAPERJ, Brazil) and the National Counsel of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico-grants 400136/2014-7, 311361/2013-7, 166186/2015-5 and 155693/2016-6, CNPq, Brazil), as well as the Coordination of Improvement of Higher Level Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-grant 125, CAPES/Embrapa 2014, CAPES, Brazil) for financial support. Rodrigues, B.L. was supported by a Coordination of Improvement of Higher Level Personnel (CAPES, Brazil) graduate scholarship.

Compliance with Ethical Standards

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro–FAPERJ, Brazil (grant number E-26/201.185/2014); National Counsel of Technological and Scientific Development–CNPq, Brazil (grants numbers 400136/2014-7, 311361/2013-7, 166186/2015-5, and 155693/2016-6), and Coordination of Improvement of Higher Level Personnel–CAPES, Brazil (grant number 125).

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interest

Bruna Leal Rodrigues declares that they have no conflict of interest. Marion Pereira da Costa declares that they have no conflict of interest. Beatriz da Silva Frasão declares that they have no conflict of interest. Flávio Alves da Silva declares that they have no conflict of interest. Eliane Teixeira Mársico declares that they have no conflict of interest. Thiago da Silveira Alvares declares that they have no conflict of interest. Carlos Adam Conte-Junior declares that they have no conflict of interest.

Informed Consent

Not applicable.

References

  1. Abbas KA, Mohamed A, Jamilah B, Ebrahimian M (2008) A review on correlations between fish freshness and pH during cold storage. Am J Biochem Biotechnol 4:416–421. doi: 10.3844/ajbbsp.2008.416.421 CrossRefGoogle Scholar
  2. Alasalvar C, Taylor KDA, Öksüz A et al (2001) Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem 72:33–40. doi: 10.1016/S0308-8146(00)00196-5 CrossRefGoogle Scholar
  3. Alasalvar C, Taylor KDA, Shahidi F (2002) Comparative quality assessment of cultured and Wild Sea bream ( Sparus aurata ) stored in ice. J Agric Food Chem 50:2039–2045. doi: 10.1021/jf010769a CrossRefGoogle Scholar
  4. Almeida NM, Franco MRB (2007) Fatty acid composition of total lipids, neutral lipids and phospholipids in wild and farmed matrinxã (Brycon cephalus) in the Brazilian Amazon area. J Sci Food Agric 87:2596–2603. doi: 10.1002/jsfa.3014 CrossRefGoogle Scholar
  5. Almeida CC, Alvares TS, Costa MP, Conte-Junior CA (2016) Protein and amino acid profiles of different whey protein supplements. J Diet Suppl 13:313–323. doi: 10.3109/19390211.2015.1036187 CrossRefGoogle Scholar
  6. Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VMF (2012) Acute L-arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr Metab 9:54. doi: 10.1186/1743-7075-9-54 CrossRefGoogle Scholar
  7. Baixas-Nogueras S, Bover-Cid S, Vidal-Carou MC, Veciana-Nogues MT (2001) Volatile and nonvolatile amines in Mediterranean hake as function of their storage temperature. J Food Sci 66:83–88. doi: 10.1111/j.1365-2621.2001.tb15586.x CrossRefGoogle Scholar
  8. Bottino FDO, Rodrigues BL, de Nunes Ribeiro JD et al (2016) Influence of UV-C radiation on shelf life of vacuum package Tambacu ( Colossoma macropomum × Piaractus mesopotamicus ) fillets: shelf life of C. macropomum × P. mesopotamicus. J Food Process Preserv. doi: 10.1111/jfpp.13003 Google Scholar
  9. Cheng J-H, Sun D-W, Han Z, Zeng X-A (2014) Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review: fish and fillet freshness quality: a review. Compr Rev Food Sci Food Saf 13:52–61. doi: 10.1111/1541-4337.12043 CrossRefGoogle Scholar
  10. Delbarre-Ladrat C, Chéret R, Taylor R, Verrez-Bagnis V (2006) Trends in postmortem aging in fish: understanding of proteolysis and disorganization of the Myofibrillar structure. Crit Rev Food Sci Nutr 46:409–421. doi: 10.1080/10408390591000929 CrossRefGoogle Scholar
  11. Emborg J, Laursen BG, Rathjen T, Dalgaard P (2002) Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2°C. J Appl Microbiol 92:790–799. doi: 10.1046/j.1365-2672.2002.01588.x CrossRefGoogle Scholar
  12. European Food Safety Authority (2009) Scientific opinion of the panel on animal health and welfare on a request from the European Commission. Species-specific welfare aspects of the main system of stunning and killing of farmed rainbow trout. The EFSA Journal 1013:1–55Google Scholar
  13. Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department (2012) The state of world fisheries and aquaculture 2012. Food and Agriculture Organization of the United Nations; Eurospan [distributor, Rome; London]Google Scholar
  14. Fraser OP, Sumar S (1998) Compositional changes and spoilage in fish (part II) - microbiological induced deterioration. Nutr Food Sci 98:325–329. doi: 10.1108/00346659810235242 CrossRefGoogle Scholar
  15. Ghaly AE, Dave D, Budge S et al (2010) Fish spoilage mechanisms and preservation techniques: review. Am J Appl Sci 7:859–877CrossRefGoogle Scholar
  16. Hernández MD, López MB, Álvarez A et al (2009) Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem 114:237–245. doi: 10.1016/j.foodchem.2008.09.045 CrossRefGoogle Scholar
  17. Hultmann L, Rustad T (2004) Iced storage of Atlantic salmon (Salmo salar) – effects on endogenous enzymes and their impact on muscle proteins and texture. Food Chem 87:31–41. doi: 10.1016/j.foodchem.2003.10.013 CrossRefGoogle Scholar
  18. Inhamuns AJ, Franco MRB, Batista WS (2009) Seasonal variations in total fatty acid composition of muscles and eye sockets of tucunaré (Cichla sp.) from the Brazilian Amazon area. Food Chem 117:272–275. doi: 10.1016/j.foodchem.2009.03.113 CrossRefGoogle Scholar
  19. Jabeen F, Chaudhry AS (2011) Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chem 125:991–996. doi: 10.1016/j.foodchem.2010.09.103 CrossRefGoogle Scholar
  20. Jain D, Pathare PB, Manikantan MR (2007) Evaluation of texture parameters of Rohu fish (Labeo rohita) during iced storage. J Food Eng 81:336–340. doi: 10.1016/j.jfoodeng.2006.11.006 CrossRefGoogle Scholar
  21. Koutsoumanis K, Lampropoulou K, Nychas GJ (1999) Biogenic amines and sensory changes associated with the microbial flora of Mediterranean gilt-head sea bream (Sparus aurata) stored aerobically at 0, 8, and 15 degrees C. J Food Prot 62:398–402CrossRefGoogle Scholar
  22. Křížek M, Pavlíček T, Vácha F (2002) Formation of selected biogenic amines in carp meat: biogenic amines in carp meat. J Sci Food Agric 82:1088–1093. doi: 10.1002/jsfa.1154 CrossRefGoogle Scholar
  23. Křížek M, Vácha F, Vorlová L et al (2004) Biogenic amines in vacuum-packed and non-vacuum-packed flesh of carp (Cyprinus carpio) stored at different temperatures. Food Chem 88:185–191. doi: 10.1016/j.foodchem.2003.12.040 CrossRefGoogle Scholar
  24. Ladero V, Calles-Enríquez M, Fernández M, Alvarez MA (2010) Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci 6:145–156CrossRefGoogle Scholar
  25. Lázaro CA, Conte-Júnior CA, Cunha FL et al (2013) Validation of an HPLC methodology for the identification and quantification of biogenic amines in chicken meat. Food Anal Methods 6:1024–1032. doi: 10.1007/s12161-013-9565-0 CrossRefGoogle Scholar
  26. Lin W-L, Zeng Q-X, Zhu Z-W, Song G-S (2012) Relation between protein characteristics and tpa texture characteristics of crisp grass carp (Ctenopharyngodon idellus c. Et v) and grass carp (Ctenopharyngodon idellus): texture-protein. J Texture Stud 43:1–11. doi: 10.1111/j.1745-4603.2011.00311.x CrossRefGoogle Scholar
  27. Liu D, Liang L, Xia W et al (2013) Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at −3 and 0°C. Food Chem 140:105–114. doi: 10.1016/j.foodchem.2013.02.034 CrossRefGoogle Scholar
  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  29. Medina MÁ, Urdiales JL, Rodríguez-Caso C et al (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59CrossRefGoogle Scholar
  30. Moreira AB, Visentainer JV, de Souza NE, Matsushita M (2001) Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J Food Compos Anal 14:565–574. doi: 10.1006/jfca.2001.1025 CrossRefGoogle Scholar
  31. Nie X, Lin S, Zhang Q (2014) Proteolytic characterisation in grass carp sausage inoculated with lactobacillus plantarum and Pediococcus pentosaceus. Food Chem 145:840–844. doi: 10.1016/j.foodchem.2013.08.096 CrossRefGoogle Scholar
  32. Ocaño-Higuera VM, Maeda-Martínez AN, Marquez-Ríos E et al (2011) Freshness assessment of ray fish stored in ice by biochemical, chemical and physical methods. Food Chem 125:49–54. doi: 10.1016/j.foodchem.2010.08.034 CrossRefGoogle Scholar
  33. Olafsdóttir G, Martinsdóttir E, Oehlenschläger J et al (1997) Methods to evaluate fish freshness in research and industry. Trends Food Sci Technol 8:258–265. doi: 10.1016/S0924-2244(97)01049-2 CrossRefGoogle Scholar
  34. Ozogul F, Gokbulut C, Ozogul Y, Ozyurt G (2006) Biogenic amine production and nucleotide ratios in gutted wild sea bass (Dicentrarchus labrax) stored in ice, wrapped in aluminium foil and wrapped in cling film at 4 °C. Food Chem 98:76–84. doi: 10.1016/j.foodchem.2005.04.037 CrossRefGoogle Scholar
  35. Pacheco-Aguilar R, Lugo-Sánchez ME, Robles-Burgueño MR (2000) Postmortem biochemical and functional characteristic of Monterey sardine muscle stored at 0 C. J Food Sci 65:40–47CrossRefGoogle Scholar
  36. Paleologos EK, Savvaidis IN, Kontominas MG (2004) Biogenic amines formation and its relation to microbiological and sensory attributes in ice-stored whole, gutted and filleted Mediterranean Sea bass (Dicentrarchus labrax). Food Microbiol 21:549–557. doi: 10.1016/j.fm.2003.11.009 CrossRefGoogle Scholar
  37. Pedrosa-Menabrito A, Regenstein JM (1988) Shelf-life extension of fresh fish - a review part I - spoilage of fish. J. Food Qual 11:117–127CrossRefGoogle Scholar
  38. Prester L (2011) Biogenic amines in fish, fish products and shellfish: a review. Food Addit Contam Part A 28:1547–1560. doi: 10.1080/19440049.2011.600728 CrossRefGoogle Scholar
  39. Riebroy S, Benjakul S, Visessanguan W, Tanaka M (2007) Effect of iced storage of bigeye snapper (Priacanthus tayenus) on the chemical composition, properties and acceptability of Som-fug, a fermented Thai fish mince. Food Chem 102:270–280. doi: 10.1016/j.foodchem.2006.05.017 CrossRefGoogle Scholar
  40. Rodrigues BL, Alvares TS, da Costa MP, Lopes Sampaio GS, Lázaro CA, Mársico ET, Conte-Junior CA (2013) Concentration of Biogenic Amines in Rainbow Trout (Oncorhynchus mykiss) Preserved in Ice and its Relationship with Physicochemical Parameters of Quality. J Aquac Res Development 4:174. doi: 10.4172/2155-9546.1000174
  41. Rodrigues BL, dos Santos LR, Mársico ET et al (2012) Qualidade físico-química do pescado utilizado na elaboração de sushis e sashimis de atum e salmão comercializados no município do Rio de Janeiro, Brasil. Semina Ciênc Agrár 33:1847–1854CrossRefGoogle Scholar
  42. Rodrigues BL, da Silveira Alvares T, GSL S et al (2016) Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control 60:596–605. doi: 10.1016/j.foodcont.2015.09.004 CrossRefGoogle Scholar
  43. Rodríguez CJ, Besteiro I, Pascual C (1999) Biochemical changes in freshwater rainbow trout (Oncorhynchus mykiss) during chilled storage†. J Sci Food Agric 79:1473–1480. doi: 10.1002/(SICI)1097-0010(199908)79:11<1473::AID-JSFA389>3.0.CO;2-C CrossRefGoogle Scholar
  44. Santos MHS (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231. doi: 10.1016/0168-1605(95)00032-1 CrossRefGoogle Scholar
  45. Suplicy FM (2007) 7.2 freshwater fish seed resources in Brazil. Assess Freshw Fish Seed Resour Sustain Aquac 70043:129Google Scholar
  46. Wu G, Meininger CJ (2008) Analysis of Citrulline, Arginine, and Methylarginines using High-Performance Liquid Chromatography. Methods Enzymol 440:177–189Google Scholar
  47. Yu D, Xu Y, Jiang Q et al (2016) Freshness assessment of grass carp ( Ctenopharyngodon idellus ) fillets during stroage at 4 °C by physicochemical, microbiological and sensorial evaluations. J Food Saf. doi: 10.1111/jfs.12305 Google Scholar
  48. Zhu S, Luo Y, Hong H et al (2013) Correlation between electrical conductivity of the gutted fish body and the quality of bighead carp (Aristichthys Nobilis) heads stored at 0 and 3 °C. Food Bioprocess Technol 6:3068–3075. doi: 10.1007/s11947-012-0991-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bruna Leal Rodrigues
    • 1
    Email author
  • Marion Pereira da Costa
    • 1
    • 2
  • Beatriz da Silva Frasão
    • 1
    • 3
  • Flávio Alves da Silva
    • 4
  • Eliane Teixeira Mársico
    • 1
  • Thiago da Silveira Alvares
    • 5
  • Carlos Adam Conte-Junior
    • 1
    • 2
  1. 1.Departamento de Tecnologia de Alimentos, Faculdade de VeterináriaUniversidade Federal Fluminense (UFF)NiteróiBrazil
  2. 2.Programa de Ciência de Alimentos, Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Departamento de Epidemiologia e Saúde Pública, Instituto de VeterináriaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  4. 4.Setor de Engenharia de Alimentos, Escola de AgronomiaUniversidade Federal de Goiás (UFG)GoiásBrazil
  5. 5.Instituto de NutriçãoUniversidade Federal do Rio de Janeiro (UFRJ)MacaéBrazil

Personalised recommendations