Advertisement

Food Analytical Methods

, Volume 10, Issue 7, pp 2549–2565 | Cite as

An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens

  • Omar MukamaEmail author
  • Jean Paul Sinumvayo
  • Muhammad Shamoon
  • Muhammad Shoaib
  • Henriette Mushimiyimana
  • Waseem Safdar
  • Leo Bemena
  • Peter Rwibasira
  • Samson Mugisha
  • Zhouping WangEmail author
Article

Abstract

Foodborne ailments constitute a public health challenge and pose an incredible economic burden in healthcare system around the globe. This dilemma has urged authorities and other entities working in field of food quality control and supply chain to play a pivotal role in ensuring food safety. Analytical strategies have been developed using numerous systematic evolution of ligands by exponential enrichment (SELEX) methods to assure food safety. High-affinity and high-sensitivity ssDNA and RNA aptamers against pathogens have emerged as a novel strategy, as compared to the more resource-demanding and complicated biochemical test-based approaches. Thus, this review aims to focus on some methods used in the selection of specific bare, modified, and conjugated aptamers and on the further analysis of selected aptamers using flow cytometer or post-SELEX modifications for enhanced detection of frequently diagnosed foodborne bacteria such as Bacillus sp., Campylobacter jejuni, Escherichia sp., Salmonella sp., Staphylococcus aureus, Shigella sp., Listeria monocytogenes, and Streptococcus pyogenes and/or targeting their cell components towards attaining fast, sensitive, and selective methods for the detection of pathogens in food(s) or other sources.

Keywords

Aptamers Modified SELEX Foodborne pathogens Food safety 

Abbreviations

FAM

6-Carboxyfluorescein

ATCC

American Type Culture Collection

FluMag-SELEX

Aptamer fluorescent labeling and magnetic beads immobilization

AM-ECL

Aptamer-magnetic bead-electrochemiluminescence

CE

Capillary electrophoresis–SELEX

CDC

Centers for Disease Control and Prevention

dPa

Deoxyribonucleoside triphosphate 4-propynylpyrrole-2-carbaldehyde

Px

Diol-modified 2-nitro-4-propynylpyrrole

DCE

DNA capture element

ELASA

Enzyme-linked aptamer sedimentation assay

ECDC

European Centre for Disease Prevention and Control

FITC

Fluorescein isothiocyannate

FRET

Fluorescence resonance energy transfer

FACS

Fluorescence-activated cell sorting

HTS

High-throughpuT-SELEX

Ds

Hydrophobic base 7-(2-thienyl) imidazo[4,5-b]pyridine

MREs

Molecular recognition elements

NECEEM

Non-equilibrium capillary electrophoresis of equilibrium mixtures

OMPs

Outer membrane proteins

QD

Quantum dot

SELEXp

Systematic evolution of ligands by exponential enrichment

SEA

Staphylococcus aureus enterotoxin A

SEB

Staphylococcus aureus enterotoxin B

SERS

Surface-enhanced Raman spectroscopy

TECS-SELEX

Target expressed on cell surface-SELEX

UCNPs

Up conversion nanoparticles

ROX

X-rhodamine

Notes

Compliance with Ethical Standards

Conflict of Interest

Omar Mukama declares that he has no conflict of interest. Jean Paul Sinumvayo declares that he has no conflict of interest. Muhammad Shamoon declares that he has no conflict of interest. Muhammad Shoaib declares that he has no conflict of interest. Henriette Mushimiyimana declares that he has no conflict of interest. Waseem Safdar declares that he has no conflict of interest. Leo Bemena declares that he has no conflict of interest. Peter Rwibasira declares that he has no conflict of interest. Samson Mugisha declares that he has no conflict of interest. Zhouping Wang declares that he has no conflict of interest.

Informed Consent

Not applicable. This article does not contain any studies with human or animal subjects.

References

  1. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus Biosensors and Bioelectronics 68:149–155 doi: http://dx.doi.org/10.1016/j.bios.2014.12.040
  2. Amaya-Gonzalez S, de los Santos Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2013) Aptamer-based analysis: a promising alternative for food safety control. Sensors 13:16292–16311. doi: 10.3390/s131216292 CrossRefGoogle Scholar
  3. Ashley J, Ji K, Li SFY (2012) Selection of bovine catalase aptamers using non-SELEX. Electrophoresis 33:2783–2789. doi: 10.1002/elps.201200032 CrossRefGoogle Scholar
  4. Baird FJ, Gasser RB, Jabbar A, Lopata AL (2014) Foodborne anisakiasis and allergy. Mol Cell Probes 28:167–174. doi: 10.1016/j.mcp.2014.02.003 CrossRefGoogle Scholar
  5. Bansal J, Singh I, Bhatnagar PK, Mathur PC (2013) DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. J Biosci Bioeng 115:438–441. doi: 10.1016/j.jbiosc.2012.11.002 CrossRefGoogle Scholar
  6. Baumstummler A, Lehmann D, Janjic N, Ochsner UA (2014) Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components. Lett Appl Microbiol 59:422–431. doi: 10.1111/lam.12295 CrossRefGoogle Scholar
  7. Beier R, Boschke E, Labudde D (2014a) New strategies for evaluation and analysis of SELEX experiments. Biomed Res Int 2014:849743. doi: 10.1155/2014/849743 CrossRefGoogle Scholar
  8. Beier R, Pahlke C, Quenzel P, Henseleit A, Boschke E, Cuniberti G, Labudde D (2014b) Selection of a DNA aptamer against norovirus capsid protein VP1. FEMS Microbiol Lett 351:162–169. doi: 10.1111/1574-6968.12366 CrossRefGoogle Scholar
  9. Bieke Van Dorsta JM, Bekaertb K, Martina ER, De Coena W, Dubruelc P, Blusta R, Robbensa J (2010) Recent advances in recognition elements of food and environmental biosensors. Biosens Bioelectron 26:1178–1194CrossRefGoogle Scholar
  10. Bini A, Mascini M, Mascini M, Turner AP (2011) Selection of thrombin-binding aptamers by using computational approach for aptasensor application. Biosensors & bioelectronics 26:4411–4416. doi: 10.1016/j.bios.2011.04.053 CrossRefGoogle Scholar
  11. Bruno JGKJ (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. BioTechniques 32:175–180Google Scholar
  12. Bruno J (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold pathogens 3:341–355 doi: 10.3390/pathogens3020341
  13. Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol 53:295–302. doi: 10.1007/s12223-008-0046-6 CrossRefGoogle Scholar
  14. Bruno JG, Carrillo MP, Phillips T, Andrews CJ (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223. doi: 10.1007/s10895-010-0670-9 CrossRefGoogle Scholar
  15. Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435. doi: 10.1007/s10895-008-0429-8 CrossRefGoogle Scholar
  16. Cao X et al (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628. doi: 10.1093/nar/gkp489 CrossRefGoogle Scholar
  17. Carlin NI, Lindberg AA (1987) Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type IV, V, and VI antigens, group 3,4 antigen, and an epitope common to all Shigella flexneri and Shigella dysenteriae type 1 stains. Infect Immun 55:1412–1420Google Scholar
  18. Castro-Rosas J, Cerna-Cortes JF, Mendez-Reyes E, Lopez-Hernandez D, Gomez-Aldapa CA, Estrada-Garcia T (2012) Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. Int J Food Microbiol 156:176–180. doi: 10.1016/j.ijfoodmicro.2012.03.025 CrossRefGoogle Scholar
  19. CDC E (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008. Morb Mortal Wkly Rep 62Google Scholar
  20. Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C (2013b) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports 3:1863. doi: 10.1038/srep01863 CrossRefGoogle Scholar
  21. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC (2013a) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 3:1863. doi: 10.1038/srep01863 CrossRefGoogle Scholar
  22. Chen CK (2007) Complex SELEX against target mixture: stochastic computer model, simulation, and analysis. Comput Methods Prog Biomed 87:189–200. doi: 10.1016/j.cmpb.2007.05.008 CrossRefGoogle Scholar
  23. Cho S, Lee SH, Chung WJ, Kim YK, Lee YS, Kim BG (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739. doi: 10.1002/elps.200406103 CrossRefGoogle Scholar
  24. Control CfD (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008 vol 60.Google Scholar
  25. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294. doi: 10.1038/nmeth.1433 CrossRefGoogle Scholar
  26. DeGrasse JA (2012a) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410. doi: 10.1371/journal.pone.0033410 CrossRefGoogle Scholar
  27. DeGrasse JA (2012b) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:7. doi: 10.1371/journal.pone.0033410 CrossRefGoogle Scholar
  28. Drabovich A (2009) Aptamers in bioanalysis. John Wiley & Sons, Inc.Google Scholar
  29. Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338CrossRefGoogle Scholar
  30. Duan N, Ding X, He L, Wu S, Wei Y, Wang Z (2013a) Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33:239–243. doi: 10.1016/j.foodcont.2013.03.011 CrossRefGoogle Scholar
  31. Duan N, Ding X, Wu S, Xia Y, Ma X, Wang Z, Chen J (2013b) In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods 94:170–174. doi: 10.1016/j.mimet.2013.06.016 CrossRefGoogle Scholar
  32. Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013c) Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). J Agric Food Chem 61:3229–3234. doi: 10.1021/jf400767d CrossRefGoogle Scholar
  33. Duan N, Chang B, Zhang H, Wang Z, Wu S (2016) Salmonella tymphimurium detection using a surface-enhanced raman scattering based aptasensor. Int J Food Microbiol 218:38–43. doi: 10.1016/j.ijfoodmicro.2015.11.006 CrossRefGoogle Scholar
  34. Duan N et al (2013d) A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta 804:151–158. doi: 10.1016/j.aca.2013.09.047 CrossRefGoogle Scholar
  35. Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686. doi: 10.1007/s00253-013-4766-4 CrossRefGoogle Scholar
  36. Dwivedi H, Smiley RD, Jaykus L-A (2010a) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi: 10.1007/s00253-010-2728-7 CrossRefGoogle Scholar
  37. Dwivedi HP, Smiley RD, Jaykus L-A (2010b) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi: 10.1007/s00253-010-2728-7 CrossRefGoogle Scholar
  38. Elham Masoudipour SLM, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay. Progress in Biological Sciences 1:11–15Google Scholar
  39. Elham Masoudipour, Seyed Latif Mousavi, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay Progress in Biological Sciences 1Google Scholar
  40. Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus LA (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9:106805. doi: 10.1371/journal.pone.0106805 CrossRefGoogle Scholar
  41. Fan M, McBurnett SR, Andrews CJ, Allman AM, Bruno JG, Kiel JL (2008) Aptamer selection express: a novel method for rapid single-step selection and sensing of aptamers. Journal of Biomolecular Techniques : JBT 19:311–319Google Scholar
  42. Feng H, Beck J, Nassal M, Hu KH (2011) A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 6:27862. doi: 10.1371/journal.pone.0027862 CrossRefGoogle Scholar
  43. Fernandez PP (2006) Selection of an aptamer against surface exposed targets on yersinia pestis. Oklahoma State University, ResearchGoogle Scholar
  44. Florian Jarosch KB, Klussmann S (2006) In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 34:86CrossRefGoogle Scholar
  45. Giamberardino A et al (2013) Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087. doi: 10.1371/journal.pone.0079087 CrossRefGoogle Scholar
  46. Gong W, Duan N, Wu S, Huang Y, Chen X, Wang Z (2015) Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal Methods 7:3625–3631. doi: 10.1039/C5AY00214A CrossRefGoogle Scholar
  47. Hamula C, Guthrie J, Zhang H, Li X, Le X (2006) Selection and analytical applications of aptamers. TrAC Trends Anal Chem 25:681–691. doi: 10.1016/j.trac.2006.05.007 CrossRefGoogle Scholar
  48. Hamula CL, Le XC, Li XF (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 83:3640–3647. doi: 10.1021/ac200575e CrossRefGoogle Scholar
  49. Hamula CLA, Peng H, Wang Z, Tyrrell GJ, Li X-F, Le XC (2016) An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods 97:51–57. doi: 10.1016/j.ymeth.2015.12.005 CrossRefGoogle Scholar
  50. Hamula CL, Zhang H, Guan LL, Li XF, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819. doi: 10.1021/ac801272s CrossRefGoogle Scholar
  51. Han SR, Lee SW (2013) In vitro selection of RNA aptamer specific to Salmonella typhimurium. J Microbiol Biotechnol 23:878–884. doi: 10.4014/jmb.1212.12033 CrossRefGoogle Scholar
  52. Hayat A, Andreescu S, Marty JL (2013) Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: application to the label free detection of small size molecules. Biosensors & bioelectronics 45:168–173. doi: 10.1016/j.bios.2013.01.059 CrossRefGoogle Scholar
  53. Helgason EOO, Caugant D et al (2000) Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630CrossRefGoogle Scholar
  54. Hernández R, Vallés C, Benito AM, Maser WK, Xavier Rius F, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. doi: 10.1016/j.bios.2013.11.053 CrossRefGoogle Scholar
  55. Huang YK, Chen XJ, Xia Y, Wu SJ, Duan N, Ma XY, Wang ZP (2014) Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin a. Anal Methods 6:690–697. doi: 10.1039/c3ay41576g CrossRefGoogle Scholar
  56. Huenniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947. doi: 10.1021/ac503261b CrossRefGoogle Scholar
  57. Ikanovic M et al (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17:193–199. doi: 10.1007/s10895-007-0158-4 CrossRefGoogle Scholar
  58. Iqbal A, Labib M, Muharemagic D, Sattar S, Dixon BR, Berezovski MV (2015) Detection of Cryptosporidium parvum oocysts on fresh produce using DNA aptamers. PLoS One 10:0137455. doi: 10.1371/journal.pone.0137455 Google Scholar
  59. Islam D, Tzipori S, Islam M, Lindberg AA (1993) Rapid detection of Shigella dysenteriae and Shigella flexneri in faeces by an immunomagnetic assay with monoclonal antibodies European. journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 12:25–32CrossRefGoogle Scholar
  60. Jay HPDRDSL-A (2013) Selection of DNA aptamers for capture and detection of SalmonellaTyphimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:677–3686Google Scholar
  61. Jaykus HPDRDSL-A (2010) Selection and characterization of DNA aptamers with binding selectivity toCampylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334CrossRefGoogle Scholar
  62. Kasahara Y, Irisawa Y, Ozaki H, Obika S, Kuwahara M (2013) 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 23:1288–1292. doi: 10.1016/j.bmcl.2012.12.093 CrossRefGoogle Scholar
  63. Kathariou S, Food Prot J (2002) Listeria monocytogenesvirulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829CrossRefGoogle Scholar
  64. Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12:448–456. doi: 10.1016/j.cbpa.2008.06.028 CrossRefGoogle Scholar
  65. Kim YS, Gu MB (2014) Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol 140:29–67. doi: 10.1007/10_2013_225 Google Scholar
  66. Kim MA, Jeon HS, Shin SY, Baik BJ, Yang YM, Lee KY, Kim JG (2013b) Rapid detection of S. mutans surface antigen I/II using a sensitive monoclonal anti-Ag I/II antibody by ELISA. Monoclonal antibodies in immunodiagnosis and immunotherapy 32:336–340. doi: 10.1089/mab.2013.0017 CrossRefGoogle Scholar
  67. Kim YS, Song MY, Jurng J, Kim BC (2013c) Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal Biochem 436:22–28. doi: 10.1016/j.ab.2013.01.014 CrossRefGoogle Scholar
  68. Kim L, Yu H-W, Kim Y-H, Kim I, Jang A (2013a) Potential of fluorophore labeled aptamers for Pseudomonas Aeruginosa detection in drinking water. J Korean Soc Appl Biol Chem 56:165–171. doi: 10.1007/s13765-013-3019-7 CrossRefGoogle Scholar
  69. Kim YS, Chung J, Song MY, Jurng J, Kim BC (2014) Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron 54:195–198. doi: 10.1016/j.bios.2013.11.003 CrossRefGoogle Scholar
  70. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457. doi: 10.1038/nbt.2556 CrossRefGoogle Scholar
  71. King NJ, Whyte R, Hudson JA (2007) Presence and significance of Bacillus cereus in dehydrated potato products. J Food Prot 70:514–520CrossRefGoogle Scholar
  72. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115. doi: 10.1038/nbt0996-1112 CrossRefGoogle Scholar
  73. Kopylov AM, Spiridonova VA (2000) Combinatorial chemistry of nucleic acids: SELEX. Mol Biol 34:940–954. doi: 10.1023/a:1026696330245 CrossRefGoogle Scholar
  74. Kotaro Fukuda DV, Sekiya S, Hwang J, Kakiuchi N, Taira K, Shimotohno K, Kumar PKR, Nishikawa S (2003) Isolation and characterization of RNA aptamers specific for hepatitis C virus nonstructural proteins 3 protease issue. Eur J Biochem 267:3685–3694CrossRefGoogle Scholar
  75. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ et al (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666Google Scholar
  76. Kuenne C, Vogets S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS One 5:12511CrossRefGoogle Scholar
  77. Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochem Mosc 72:1505–1518. doi: 10.1134/s000629790713007x CrossRefGoogle Scholar
  78. Lamba K et al (2016) Shiga toxin 1-producing Shigella sonnei infections, California, United States, 2014-2015. Emerg Infect Dis 22:679–686. doi: 10.3201/eid2204.151825 CrossRefGoogle Scholar
  79. Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW (2015) Pharmacokinetics of a cholesterol-conjugated aptamer against the hepatitis C virus (HCV) NS5B. Protein Mol Ther Nucleic Acids 4:e254. doi: 10.1038/mtna.2015.30 CrossRefGoogle Scholar
  80. Li K, Lai Y, Zhang W, Jin L (2011) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84:607–613. doi: 10.1016/j.talanta.2010.12.042 CrossRefGoogle Scholar
  81. Lim YC, Kouzani AZ, Duan W (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105CrossRefGoogle Scholar
  82. Lin H, Zhang W, Jia S, Guan Z, Yang CJ, Zhu Z (2014) Microfluidic approaches to rapid and efficient aptamer selection Biomicrofluidics 8 doi: 10.1063/1.4890542
  83. Litao Yang CWF, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329CrossRefGoogle Scholar
  84. Liu Guo-qing LY-Q, Chao G, Xiao-feng Y, Ming Z, Kai Z, Xuejiao C, Yi Y (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129CrossRefGoogle Scholar
  85. Liu G-Q et al (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129. doi: 10.1016/s2095-3119(14)60766-8 CrossRefGoogle Scholar
  86. Lu E, Elizondo-Riojas M-A, Chang JT, Volk DE (2014) Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data. Biochemistry 53:3523–3525. doi: 10.1021/bi500443e CrossRefGoogle Scholar
  87. Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98. doi: 10.1016/j.mimet.2014.01.003 CrossRefGoogle Scholar
  88. Martell RE, Nevins JR, Sullenger BA (2002) Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 6:30–34. doi: 10.1006/mthe.2002.0624 CrossRefGoogle Scholar
  89. Marty JL Hayat A (2014) Aptamer based electrochemical sensors for emerging environmental pollutants Front Chem 2Google Scholar
  90. Mathew A, Maekawa T, Sakthikumar D (2015) Aptamers in targeted nanotherapy Current Topics in Medicinal Chemistry 15:1102–1114Google Scholar
  91. Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protocols 5:1993–2004CrossRefGoogle Scholar
  92. McKeague M, Derosa MC (2012) Challenges and opportunities for small molecule aptamer development. Journal of nucleic acids 2012:748–913. doi: 10.1155/2012/748913 CrossRefGoogle Scholar
  93. McKeague M, Giamberardino A (2011) Advances in aptamer-based biosensors for food safety. Somerset (Ed.) edn. InTech,Google Scholar
  94. McKeague M, Giamberardino A, DeRosa CM (2011) Advances in aptamer-based biosensors for food safety. In: Somerset V (ed). Carleton University, Department of Chemistry Ottawa, Ontario,canada,Google Scholar
  95. McKeague M, Velu R, Hill K, Bardoczy V, Meszaros T, MC DR (2014) Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6:2435–2452. doi: 10.3390/toxins6082435 CrossRefGoogle Scholar
  96. Mei ZM, Chu HQ, Chen W, Xue F, Liu J, Xu HN, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosensors & bioelectronics 39:26–30CrossRefGoogle Scholar
  97. Ming Yang ZP, Ning Y, Chen Y, Zhou Q, Deng L (2013) Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon. Nanotubes Sensors 13:6865–6881CrossRefGoogle Scholar
  98. Moon J, Kim G, Lee S, Park S (2013) Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. J Microbiol Methods 95:162–166. doi: 10.1016/j.mimet.2013.08.005 CrossRefGoogle Scholar
  99. Moon J, Kim G, Park S (2014) Development of ssDNA aptamers for the capture and detection of Salmonella typhimurium. Anal Methods 6:7442–7448. doi: 10.1039/c4ay01035c CrossRefGoogle Scholar
  100. Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers. Sensors 15:8884–8897. doi: 10.3390/s150408884 CrossRefGoogle Scholar
  101. Mossali C et al (2010) Sensitive detection and quantification of anisakid parasite residues in food products. Foodborne Pathog Dis 7:391–397. doi: 10.1089/fpd.2009.0428 CrossRefGoogle Scholar
  102. Nitzsche R, Rosenheinrich M, Kreikemeyer B, Oehmcke-Hecht S (2015) Streptococcus pyogenes triggers activation of the human contact system by streptokinase. Infect Immun 83:3035–3042. doi: 10.1128/IAI.00180-15 CrossRefGoogle Scholar
  103. Niyogi, SK, (2005) Shigellosis J Microbiol: 133–143Google Scholar
  104. Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2013) Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 85:1132–1137. doi: 10.1021/ac303023d CrossRefGoogle Scholar
  105. Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109:808–817. doi: 10.1111/j.1365-2672.2010.04709.x CrossRefGoogle Scholar
  106. Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88:897–904. doi: 10.1016/j.biochi.2006.02.004 CrossRefGoogle Scholar
  107. Park H-C, Baig I, Lee S-C, Moon J-Y, Yoon M-Y (2014a) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi: 10.1007/s12010-014-1103-z CrossRefGoogle Scholar
  108. Park H-C, Baig IA, Lee S-C, Moon J-Y, Yoon M-Y (2014b) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi: 10.1007/s12010-014-1103-z CrossRefGoogle Scholar
  109. Radi A-E (2011) Electrochemical aptamer-based biosensors. Recent Advances and Perspectives International Journal of Electrochemistry 2011:1–17. doi: 10.4061/2011/863196 CrossRefGoogle Scholar
  110. Raghavendra Joshi HJ, Hari P, Dwivedi TMA, Kumar S, Jayku L-A, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection ofSalmonella entericaserovars. Mol Cell Probes 23:20–28CrossRefGoogle Scholar
  111. Savory N et al (2013) In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis. Biotechnol Bioeng 110:2573–2580. doi: 10.1002/bit.24922 CrossRefGoogle Scholar
  112. Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. TrAC Trends Anal Chem 62:1–10. doi: 10.1016/j.trac.2014.07.007 CrossRefGoogle Scholar
  113. Sett A (2012) Aptasensors in health. Environment and Food Safety Monitoring Open Journal of Applied Biosensor 01:9–19. doi: 10.4236/ojab.2012.12002 CrossRefGoogle Scholar
  114. Shi X, He F, Lian Y, Yan D, Zhang X (2014) A new aptamer/SWNTs IDE-SPQC sensor for rapid and specific detection of Group A Streptococcus. Sensors and Actuators B: Chemical 198:431–437. doi: 10.1016/j.snb.2014.03.067 CrossRefGoogle Scholar
  115. So HM et al. (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors Small 4:197–201Google Scholar
  116. Somer L, Kashi Y (2003) A PCR method based on 16S rRNA sequence for simultaneous detection of the genus listeria and the species Listeria monocytogenesin food products. J Food Prot 66:1658–1665CrossRefGoogle Scholar
  117. Spiridonova LN (2014) Introgression of nuclear and mitochondrial DNA markers of Mus musculus musculus to aboriginal populations of wild mice from Central Asia (M-m. wagneri) and South Siberia (M-m. gansuensis). Mol Biol 48:75–83. doi: 10.1134/s0026893314010142 CrossRefGoogle Scholar
  118. Spiridonova VA, Levashov PA, Ovchinnikova ED, Afanasieva OI, Glinkina KA, Adamova IY, Pokrovsky SN (2014) DNA aptamer-based sorbents for binding human IgE. Russian Journal of Bioorganic Chemistry 40:151–154. doi: 10.1134/s1068162014020125 CrossRefGoogle Scholar
  119. Stoltenburg R, Reinemann C, Strehlitz B (2005b) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi: 10.1007/s00216-005-3388-9 CrossRefGoogle Scholar
  120. Stoltenburg R, Reinemann C, Strehlitz B (2005a) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi: 10.1007/s00216-005-3388-9 CrossRefGoogle Scholar
  121. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELE—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. doi: 10.1016/j.bioeng.2007.06.001 CrossRefGoogle Scholar
  122. Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42:2389–2402. doi: 10.1080/00032710903137376 CrossRefGoogle Scholar
  123. Subramanian Viswanathan JR (2008) Nanomaterials in electrochemical biosensors for food analysis—a review food and nutrition sciences 58:157–164Google Scholar
  124. Suh SH, Jaykus L-A (2013) Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol 167:454–461. doi: 10.1016/j.jbiotec.2013.07.027 CrossRefGoogle Scholar
  125. Suh SH, Dwivedi HP, Jaykus L-A (2014b) Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni. LWT Food Sci Technol 56:256–260. doi: 10.1016/j.lwt.2013.12.012 CrossRefGoogle Scholar
  126. Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014a) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45. doi: 10.1016/j.ab.2014.05.006 CrossRefGoogle Scholar
  127. Sur DS, Ramamurthy T, Deen J, Bhattarcharya SK et al (2004) Shigellosis: challenges and management issues. Indian J Med 120:454–462Google Scholar
  128. Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222. doi: 10.1089/oli.2009.0199 CrossRefGoogle Scholar
  129. Thiem VD et al (2004) Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam. Journal of Clinical Microbiology 42:2031–2035. doi: 10.1128/JCM.42.5.2031-2035.2004 CrossRefGoogle Scholar
  130. Tibor Hianik VO, Sonlajtnerova M, Grman I (2007) Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. bielectrochemistry 70:127–133CrossRefGoogle Scholar
  131. Tombelli SMM, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200CrossRefGoogle Scholar
  132. Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200. doi: 10.1016/j.bioeng.2007.03.003 CrossRefGoogle Scholar
  133. Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosensors & bioelectronics 24:3175–3182. doi: 10.1016/j.bios.2008.11.010 CrossRefGoogle Scholar
  134. Tuerk CALG (1990a) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques. doi: 10.2144/000113786 Google Scholar
  135. Tuerk CALG (1990b) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques 249:505–510. doi: 10.2144/000113786 Google Scholar
  136. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254. doi: 10.1016/j.biotechadv.2009.12.004 CrossRefGoogle Scholar
  137. Walker MJ et al (2014) Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 27:264–301. doi: 10.1128/CMR.00101-13 CrossRefGoogle Scholar
  138. Wang Y-X, Ye Z-Z, Si C-Y, Ying Y-B (2012) Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin J Anal Chem 40:634–642. doi: 10.1016/s1872-2040(11)60542-2 CrossRefGoogle Scholar
  139. Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278. doi: 10.1007/s10096-010-1074-0 CrossRefGoogle Scholar
  140. Warda AK et al (2016) Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLoS One 11:e0156796. doi: 10.1371/journal.pone.0156796 CrossRefGoogle Scholar
  141. Wei Wu ZF, Zhaoa S, Lua X, Yua L, Meia T, Zeng L (2015) A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv 4:22009–22012. doi: 10.1039/b000000x CrossRefGoogle Scholar
  142. Wenhe Wu JZ, Zheng M, Zhong Y, Yang J, Zhao Y, Wu W, Wei Ye JW, Wang Q, Lu J (2012) An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 7:9. doi: 10.1371/journal.pone.0048999.g002 Google Scholar
  143. Wu LH, Curran JF (1999) An allosteric synthetic DNA. Nucleic Acids Research 27:1512–1516. doi: 10.1093/nar/27.6.1512 CrossRefGoogle Scholar
  144. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107. doi: 10.1021/ac404205c CrossRefGoogle Scholar
  145. Xi Z, Huang R, Deng Y, He N (2014) Progress in selection and biomedical applications of aptamers. J Biomed Nanotechnol 10:3043–3062CrossRefGoogle Scholar
  146. Xu D-M, Wu M, Zou Y, Zhang Q, Wu C-C, Zhou Y, Liu X-J (2011) Application of aptamers in food safety. Chin J Anal Chem 39:925–933. doi: 10.1016/s1872-2040(10)60447-1
  147. Yang X-H, Kong W-J, Yang M-H, Zhao M, Ouyang Z (2013) Application of aptamer identification technology in rapid analysis of mycotoxins. Chin J Anal Chem 41:297–306. doi: 10.1016/s1872-2040(13)60630-1
  148. Yuan J, Tao Z, Yu Y, Ma X, Xia Y, Wang L, Wang Z (2014) A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control 37:188–192. doi: 10.1016/j.foodcont.2013.09.046 CrossRefGoogle Scholar
  149. Yun W, Li H, Chen S, Tu D, Xie W, Huang Y (2014) Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238:989–995. doi: 10.1007/s00217-014-2166-3 CrossRefGoogle Scholar
  150. Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254–9260. doi: 10.1021/ac101739b CrossRefGoogle Scholar
  151. Zhang X, Du X-J, Guan C, Li P, Zheng W-J, Wang S (2015) Detection of Vibrio cholerae by isothermal cross-priming amplification combined with nucleic acid detection strip analysis. Mol Cell Probes 29:208–214. doi: 10.1016/j.mcp.2015.05.001 CrossRefGoogle Scholar
  152. Zhijun Guoa JR, Wanga J, Wanga E (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85:2517–2521CrossRefGoogle Scholar
  153. Zhou L, Wang M-H, Wang J-P, Ye Z-Z (2011) Application of biosensor surface immobilization methods for aptamer Chinese. J Anal Chem 39:432–438. doi: 10.1016/s1872-2040(10)60429-x Google Scholar
  154. Zimmermann B, Bilusic I, Lorenz C, Schroeder R (2010) Genomic SELEX: a discovery tool for genomic aptamers. Methods (San Diego, Calif) 52:125–132. doi: 10.1016/j.ymeth.2010.06.004 CrossRefGoogle Scholar
  155. Zuo PLX, Dominguez DC, Ye BC (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Biosensor Bioelectron 13:3921–3928Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Omar Mukama
    • 1
    • 2
    Email author
  • Jean Paul Sinumvayo
    • 1
  • Muhammad Shamoon
    • 3
  • Muhammad Shoaib
    • 3
  • Henriette Mushimiyimana
    • 1
  • Waseem Safdar
    • 3
  • Leo Bemena
    • 1
  • Peter Rwibasira
    • 2
  • Samson Mugisha
    • 1
  • Zhouping Wang
    • 3
    Email author
  1. 1.Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Department of Applied BiologyCollege of Science and Technology University of RwandaKigaliRwanda
  3. 3.State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and NutritionJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations