Advertisement

Food Analytical Methods

, Volume 10, Issue 5, pp 1568–1574 | Cite as

The Use of the PHOTOCHEM Device in Evaluation of Antioxidant Activity of Polish Honey

  • Monika Wesołowska
  • Małgorzata Dżugan
Article

Abstract

Forty samples of varietal Polish honeys were investigated in order to assess their antioxidant capacity by photochemiluminescence (PCL) methods using standard ACW and ACL kits. The reference methods, FRAP and DPPH, were used. The total phenolics content (TPC) by Folin-Ciocalteau method was determined. The antioxidant properties of honeys as well as TPC were mainly dependent on honey botanical origin. The highest phenolic content and antioxidant activity for dark honeys, while the lowest for white honeys, were found. Moreover, the results obtained by used analytical methods were comparable and the best correlation between PCL and FRAP (r > 0.81) and DPPH (r = 0.74) methods was observed. The TPC in honeys was positively correlated with its antioxidant activity measured by PCL (r > 0.76). Used for the first time, PCL assay demonstrated usefulness in determining the antioxidant capacity of honey, divided into water-and lipid-soluble fractions, measured by ACW and ACL kits, respectively.

Keywords

Honey Antioxidant capacity Photochemiluminescence method PCL 

Notes

Compliance with Ethical Standards

Funding

This study was funded by PB/KChTŻ.

Conflict of Interest

Monika Wesołowska declares that she has no conflict of interest. Małgorzata Dżugan declares that she has no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Al ML, Daniel D, Moise A, Bobis O, Laslo L, Bogdanov S (2009) Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem 112:863–867. doi: 10.1016/j.foodchem.2008.06.055 CrossRefGoogle Scholar
  2. Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic contents and antioxidants capacities of two Malaysian floral honeys. Food Chem 85:513–518. doi: 10.1016/S0308-8146(02)00596-4 CrossRefGoogle Scholar
  3. Al-Mamary M, Al-Meeri A, Al-Habori M (2002) Antioxidant activities and total phenolics of different types of honey. Nutr Research 22:1041–1047. doi: 10.1016/S0271-5317(02)00406-2 CrossRefGoogle Scholar
  4. Alvarez-Suarez J, Giampieri F, Battino M (2013) Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Current Med Chem 30:621–638. doi: 10.2174/092986713804999358 CrossRefGoogle Scholar
  5. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419. doi: 10.1016/S0924-2244(01)00027-9 CrossRefGoogle Scholar
  6. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412. doi: 10.2337/diab.40.4.405 CrossRefGoogle Scholar
  7. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9. doi: 10.2337/diabetes.48.1.1 CrossRefGoogle Scholar
  8. Benzie I, Strain J (1996) Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio.1996.0292 CrossRefGoogle Scholar
  9. Beretta G, Granata P, Ferrero M, Orioli M, Facino RM (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorometric assays and chemometrics. Anal Chim Acta 533:180–191. doi: 10.1016/j.aca.2004.11.010 CrossRefGoogle Scholar
  10. Bertoncejl J, Dobersek U, Jamnik M, Golob T (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 105:822–828. doi: 10.1016/j.foodchem.2007.01.060 CrossRefGoogle Scholar
  11. Besco E, Braccioli E, Vertuani S, Ziosi P, Brazzo F, Bruni R, Sacchetti G, Manfredini S (2007) The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem 102:1352–1356. doi: 10.1016/j.foodchem.2006.05.067 CrossRefGoogle Scholar
  12. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW (1993) Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther 266:992–1000Google Scholar
  13. Chis AM, Purcarea C, Dżugan M, Teusdea A (2016) Comparitive antioxidant content and activity of selected Romanian and polish honey. Rev Chim 67:214–218Google Scholar
  14. Chua LS, Rahaman NL, Adnan NA, Tan Ti TE (2013) Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem Article ID 313798. doi: 10.1155/2013/313798
  15. Czerwiecki L (2009) Contemporary view of plant antioxidants role in prevention of civilization diseases. Roczn PZH 60:201–206 (in Polish)Google Scholar
  16. Dezmirean GI, Mărghitaş LA, Bobiş O, Dezmirean DS, Bonta V, Erler S (2012) Botanical origin causes changes in nutritional profile and antioxidant activity of fermented products obtainedfrom honey. J Agric Food Chem 60:8028–8035. doi: 10.1021/jf3022282 CrossRefGoogle Scholar
  17. Dżugan M, Kisała J (2011) Application of the Photochem system in agricultural investigations. In: Puchalski C, Bartosz G (eds) Modern methods in analysis of agricultural raw materials. University of Rzeszow Publishing Office, Rzeszów, pp. 193–203Google Scholar
  18. Erejuwa O, Sulaiman S, AbWahab M (2012) Honey: a novel antioxidant. Molecules 17:4400–4423CrossRefGoogle Scholar
  19. Frankel S, Robinson GE, Berenbaum MR (1998) Antioxidant capacity and correlated characteristics of 14 unifloral honeys. J Apic Res 37:27–31. doi: 10.1080/00218839.1998.11100951 CrossRefGoogle Scholar
  20. Gheldof N, Engeseth NJ (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 50:3050–3055. doi: 10.1021/jf0114637 CrossRefGoogle Scholar
  21. Gheldof N, Wang XH, Engeseth NJ (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50:5870–5877. doi: 10.1021/jf0256135 CrossRefGoogle Scholar
  22. Hołderna-Kędzia E, Kędzia B (2006) Research on an antioxidant capacity of honeys. Acta Agrobot 59:265–269. doi: 10.5586/aa.2006.027 CrossRefGoogle Scholar
  23. Isnandia AA, Tania MS, Celso AC, Neide Q, Marciane MJ, Luiz EB, Edeltrudes OL, Antonia LS, Antonio GS (2013) Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, northern Brazil. Food Chem 14:3552–3558. doi: 10.1016/j.foodchem.2013.06.072 Google Scholar
  24. Kaškonienė V, Maruška A, Kornyšova O, Charczun N, Ligor M, Buszewski B (2009) Quantitative and qualitative determination of phenolic compounds in honey. Chemine Technologija 3:74–80Google Scholar
  25. MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056. doi: 10.1002/jsfa.2603 CrossRefGoogle Scholar
  26. Nilsson J, Pillai D, Onning G, Persson C, Nilsson A, Akesson B (2005) Comparison of the 2,2′-azinobis-3-ethylbenzotiazoline-6- sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Mol Nutr Food Res 49:239–246. doi: 10.1002/mnfr.200400083 CrossRefGoogle Scholar
  27. Oliveiraa S, Souzaa GA, Rodrigues Eckerta C, Alves Silvaa T, Silva Sobralb E, Oriana FA, Pena Ferreirab MJ, Romoffb P, Baader WJ (2014) Evaluation of antiradical assays used in determining the antioxidant capacity of pure compounds and plant extracts. Quim Nov. 37:497–503. doi: 10.5935/0100-4042.20140076
  28. Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128. doi: 10.1021/jf0116606 CrossRefGoogle Scholar
  29. Pilijac-Zegarac J, Stipcevic T, Belscak A (2009) Antioxidant properties and phenolic content of different floral origin honeys. J ApiProd ApiMed Sci 1:43–50. doi: 10.3896/IBRA.4.01.2.04 CrossRefGoogle Scholar
  30. Popov I, Lewin G (1999) Antioxidative homeostasis: characterization by means of chemiluminescent technique. Meth Enzymol 300:437–456. doi: 10.1016/S0076-6879(99)00149-4 CrossRefGoogle Scholar
  31. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181. doi: 10.1016/S0891-5849(99)00203-8 CrossRefGoogle Scholar
  32. Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36:177–187. doi: 10.1080/10715760290006411 CrossRefGoogle Scholar
  33. Sibel S, Osman S, Lutfiye E (2010) Total phenolic content, antiradical, antioxidant and antimicrobial activities of rhododendron honeys. Food Chem 121:238–243. doi: 10.1016/j.foodchem.2009.11.078 CrossRefGoogle Scholar
  34. Sidor A, Gramza-Michałowska A, Drgas M, Korczak J, Skręty J (2013) Evaluation of chokeberry preparations antioxidant activity with use of the photochemilumiescence (PCL) assay. Probl Hig Epidemiol 94:835–838 (in Polish)Google Scholar
  35. Sullivan A, Callaghan Y, Connor T, Brien N (2013) Comparison of the antioxidant activity of commercial honeys, before and after In-vitro digestion. Pol J Food Nutr Sci 63:167–171. doi: 10.2478/v10222-012-0080-6 Google Scholar
  36. Taormina PJ, Niemira BA, Bauchat LR (2001) Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol 69:217–225. doi: 10.1016/S0168-1605(01)00505-0 CrossRefGoogle Scholar
  37. Wilczyńska A (2010) Phenolic content and antioxidant activity of different types of polish honey—a short report. Pol J Food Nutr Sci 60:309–313Google Scholar
  38. Young IS, Tate S, Lightbody JH, McMaster D, Trimble ER (1995) The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med 18:833–840. doi: 10.1016/0891-5849(94)00202-U CrossRefGoogle Scholar
  39. Zhang D, Hamauzu Y (2004) Phenolics, ascorbic acids, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 88:503–509. doi: 10.1016/j.foodchem.2004.01.065 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Food Toxicology, Faculty of Biology and AgricultureUniversity of RzeszówRzeszówPoland

Personalised recommendations