Food Analytical Methods

, Volume 10, Issue 5, pp 1317–1327 | Cite as

Strategies to Document Adulteration of Food Supplement Based on Sea Buckthorn Oil: a Case Study

  • Kamila Hurkova
  • Josep Rubert
  • Milena Stranska-Zachariasova
  • Jana Hajslova
Article

Abstract

In this case study, a food supplement with declared content of sea buckthorn oil was investigated since it was suspected to be adulterated by sunflower oil. Polar and non-polar fractions extracted from oil supplement were analyzed and compared with authentic sea buckthorn and sunflower oils examined in the same way. Three different analytical platforms were used in order to characterize these samples: (i) ambient mass spectrometry consisting of direct analysis in real time (DART) ion source coupled to quadrupole time-of-flight mass spectrometry (Q-TOF MS); (ii) ultra performance liquid chromatography (UHPLC) coupled to quadrupole time-of-flight mass spectrometry, and (iii) high-performance liquid chromatography coupled to diode array detector (HPLC-DAD). The fingerprints of polar and non-polar extracts, regardless they were obtained by DART-HRMS and/or UHPLC-HRMS, were almost identical with those of sunflower “reference” oil. The last of employed techniques, HPLC-DAD, provided complementary information on the occurrence of various visible light-absorbing compounds. While a rich carotenoid profile was shown in sea buckthorn oil, dominated by β-carotene, lutein, and lycopene, the color of the suspected sample was caused only by high concentration of β-carotene. In principle, these techniques proved to be suitable and complementary tools for oil authentication and allowed an oil supplement to be rapidly verified.

Keywords

Oil authentication Sea buckthorn Oil supplement UHPLC-HRMS DART-HRMS HPLC-DAD 

References

  1. Albert A, Shelley JT, Engelhard C (2014) Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem 406:6111–6127. doi:10.1007/s00216-014-7989-z CrossRefGoogle Scholar
  2. Aparicio R, Morales MT, Aparicio-Ruiz R, Tena N, García-González DL (2013) Authenticity of olive oil: mapping and comparing official methods and promising alternatives. Food Res Int 54:2025–2038. doi:10.1016/j.foodres.2013.07.039 CrossRefGoogle Scholar
  3. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT (2013) Why US adults use dietary supplements. JAMA Intern Med 173:355–361. doi:10.1001/jamainternmed.2013.2299 CrossRefGoogle Scholar
  4. Bal LM, Meda V, Naik SN, Satya S (2011) Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res Int 44:1718–1727. doi:10.1016/j.foodres.2011.03.002 CrossRefGoogle Scholar
  5. Beveridge T, Li TSC, Oomah BD, Smith A (1999) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47:3480–3488. doi:10.1021/jf981331m CrossRefGoogle Scholar
  6. Bosque-Sendra JM, Cuadros-Rodriguez L, Ruiz-Samblas C, de l, Mata AP (2012) Combining chromatography and chemometrics for the characterization and authentication of fats and oils from triacylglycerol compositional data—a review. Anal Chim Acta 724:1–11. doi:10.1016/j.aca.2012.02.041 CrossRefGoogle Scholar
  7. Casale M et al (2012) Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Anal Chim Acta 712:56–63. doi:10.1016/j.aca.2011.11.015 CrossRefGoogle Scholar
  8. Chawla R et al (2007) Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J Med Food 10:101–109. doi:10.1086/jmf.2006.007 CrossRefGoogle Scholar
  9. Codex Alimentarius. Codex Standard for Named Vegetable Oils: Codex Stan 210 (Amended 2005, 2011, 2013, 2015) p:6.Google Scholar
  10. Dais P, Hatzakis E (2013) Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review. Anal Chim Acta 765:1–27. doi:10.1016/j.aca.2012.12.003 CrossRefGoogle Scholar
  11. Deconinck E, Kamugisha A, Van Campenhout P, Courselle P, De Beer JO (2015) Development of a stationary phase optimised selectivity liquid chromatography based screening method for adulterations of food supplements for the treatment of pain. Talanta 138:240–246. doi:10.1016/j.talanta.2015.03.010 CrossRefGoogle Scholar
  12. Dulf FV (2012) Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem Cent J 6:106. doi:10.1186/1752-153X-6-106 CrossRefGoogle Scholar
  13. Erkkola R, Yang BR (2003) Sea buckthorn oils: towards healthy mucous membranes. Agro Food Ind Hi-Tech 14:53–57Google Scholar
  14. Feltes MMC, de Oliveira D, Block JM, Ninow JL (2012) The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food Bioprocess Technol 6:17–35. doi:10.1007/s11947-012-0836-3 CrossRefGoogle Scholar
  15. Geetha S, Ram MS, Singh V, Ilavazhagan G, Sawhney RC (2002) Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)—an in vitro study. J Ethnopharmacol 79:373–378. doi:10.1016/s0378-8741(01)00406-8 CrossRefGoogle Scholar
  16. Geetha S, Singh V, Ram MS, Ilavazhagan G, Banerjee PK, Sawhney RC (2005) Immunomodulatory effects of seabuckthorn (Hippophae rhamnoides L.) against chromium (VI) induced immunosuppression. Mol Cell Biochem 278:101–109. doi:10.1007/s11010-005-7095-9 CrossRefGoogle Scholar
  17. Giuffrida D, Pintea A, Dugo P, Torre G, Pop RM, Mondello L (2012) Determination of carotenoids and their esters in fruits of sea buckthorn (Hippophae rhamnoides L.) by HPLC-DAD-APCI-MS. Phytochem Anal 23:267–273. doi:10.1002/pca.1353 CrossRefGoogle Scholar
  18. Goel HC, Prasad J, Singh S, Sagar RK, Kumar IP, Sinha AK (2002) Radioprotection by a herbal preparation of Hippophae rhamnoides, RH-3, against whole body lethal irradiation in mice. Phytomedicine 9:15–25. doi:10.1078/0944-7113-00077 CrossRefGoogle Scholar
  19. Goel HC, Salin CA, Prakash H (2003) Protection of Jejunal crypts by RH-3 (a preparation of Hippophae rhamnoides) against lethal whole body gamma irradiation. Phytother Res 17:222–226. doi:10.1002/ptr.1109 CrossRefGoogle Scholar
  20. Goel HC, Gupta D, Gupta S, Garg AP, Bala M (2005) Protection of mitochondrial system by Hippophae rhamnoides L. Against radiation-induced oxidative damage in mice. J Pharm Pharmacol 57:135–143. doi:10.1211/0022357055218 CrossRefGoogle Scholar
  21. Gross JH (2014) Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem 406:63–80. doi:10.1007/s00216-013-7316-0 CrossRefGoogle Scholar
  22. Hajslova J, Cajka T, Vaclavik L (2011) Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis TrAC. Trends Anal Chem 30:204–218. doi:10.1016/j.trac.2010.11.001 CrossRefGoogle Scholar
  23. Hrbek V, Vaclavik L, Elich O, Hajslova J (2014) Authentication of milk and milk-based foods by direct analysis in real time ionization–high resolution mass spectrometry (DART–HRMS) technique: a critical assessment. Food Control 36:138–145. doi:10.1016/j.foodcont.2013.08.003 CrossRefGoogle Scholar
  24. Ikeda K, Oike Y, Shimizu T, Taguchi R (2009) Global analysis of triacylglycerols including oxidized molecular species by reverse-phase high resolution LC/ESI-QTOF MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 877:2639–2647. doi:10.1016/j.jchromb.2009.03.047 CrossRefGoogle Scholar
  25. Ito H et al (2014) Healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model. Burns 40:511–519. doi:10.1016/j.burns.2013.08.011 CrossRefGoogle Scholar
  26. Kim JS, Kwon YS, Sa YJ, Kim MJ (2011) Isolation and identification of sea buckthorn (Hippophae rhamnoides) Phenolics with antioxidant activity and alpha-glucosidase inhibitory effect. J Agric Food Chem 59:138–144. doi:10.1021/jf103130a CrossRefGoogle Scholar
  27. Larmo PS, Yang B, Hurme SA, Alin JA, Kallio HP, Salminen EK, Tahvonen RL (2009) Effect of a low dose of sea buckthorn berries on circulating concentrations of cholesterol, triacylglycerols, and flavonols in healthy adults. Eur J Nutr 48:277–282. doi:10.1007/s00394-009-0011-4 CrossRefGoogle Scholar
  28. Nemes-Nagy E et al (2008) Effect of a dietary supplement containing blueberry and sea buckthorn concentrate on antioxidant capacity in type 1 diabetic children. Acta Physiol Hung 95:383–393. doi:10.1556/APhysiol.95.2008.4.5 CrossRefGoogle Scholar
  29. Osorio MT, Haughey SA, Elliott CT, Koidis A (2014) Evaluation of methodologies to determine vegetable oil species present in oil mixtures: proposition of an approach to meet the EU legislation demands for correct vegetable oils labelling. Food Res Int 60:66–75. doi:10.1016/j.foodres.2013.12.013 CrossRefGoogle Scholar
  30. Ozen BF, Weiss I, Mauer LJ (2003) Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy. J Agric Food Chem 51:5871–5876. doi:10.1021/jf034245h CrossRefGoogle Scholar
  31. Pop RM, Weesepoel Y, Socaciu C, Pintea A, Vincken JP, Gruppen H (2014) Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem 147:1–9. doi:10.1016/j.foodchem.2013.09.083 CrossRefGoogle Scholar
  32. Rubert J, Zachariasova M, Hajslova J (2015) Advances in high-resolution mass spectrometry based on metabolomics studies for food—a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:1685–1708. doi:10.1080/19440049.2015.1084539 CrossRefGoogle Scholar
  33. Singh R, Ahmed Z (2010) Seabuckthorn: a multipurpose medicinal plant, vol 30. Drug Plants Iv. Studium Press Llc, HoustonGoogle Scholar
  34. Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol 138:268–278. doi:10.1016/j.jep.2011.09.024 CrossRefGoogle Scholar
  35. Upadhyay NK, Kumar R, Mandotra SK, Meena RN, Siddiqui MS, Sawhney RC, Gupta A (2009) Safety and healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem Toxicol 47:1146–1153. doi:10.1016/j.fct.2009.02.002 CrossRefGoogle Scholar
  36. Vaclavik L, Cajka T, Hrbek V, Hajslova J (2009) Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal Chim Acta 645:56–63. doi:10.1016/j.aca.2009.04.043 CrossRefGoogle Scholar
  37. Vaclavik L, Hrbek V, Cajka T, Rohlik BA, Pipek P, Hajslova J (2011) Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools. J Agric Food Chem 59:5919–5926. doi:10.1021/jf200734x CrossRefGoogle Scholar
  38. Varshneya C, Kant V, Mehta M (2012) Total phenolic contents and free radical scavenging activities of different extracts of seabuckthorn (Hippophae rhamnoides) pomace without seeds. Int J Food Sci Nutr 63:153–159. doi:10.3109/09637486.2011.608652 CrossRefGoogle Scholar
  39. Wang Y, Li C, Huang L, Liu L, Guo Y, Ma L, Liu S (2014) Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry. Anal Chim Acta 845:70–76. doi:10.1016/j.aca.2014.06.014 CrossRefGoogle Scholar
  40. Wheatley VM, Spink J (2013) Defining the public health threat of dietary supplement fraud. Compr Rev Food Sci Food Saf 12:599–613. doi:10.1111/1541-4337.12033 CrossRefGoogle Scholar
  41. Xu Y-J, Kaur M, Dhillon RS, Tappia PS, Dhalla NS (2011) Health benefits of sea buckthorn for the prevention of cardiovascular diseases. J Funct Foods 3:2–12. doi:10.1016/j.jff.2011.01.001 CrossRefGoogle Scholar
  42. Yang B, Kallio H (2002) Composition and physiological effects of sea buckthorn (Hippophaë) lipids. Trends Food Sci Technol 13:160–167. doi:10.1016/S0924-2244(02)00136-X CrossRefGoogle Scholar
  43. Yang B, Kallio H (2006) Analysis of triacylglycerols of seeds and berries of sea buckthorn (Hippophaë rhamnoides) of different origins by mass spectrometry and tandem mass spectrometry. Lipids 41:381–392. doi:10.1007/s11745-006-5109-3 CrossRefGoogle Scholar
  44. Yang B, Kalimo KO, Tahvonen RL, Mattila LM, Katajisto JK, Kallio HP (2000) Effect of dietary supplementation with sea buckthorn (Hippophae rhamnoides) seed and pulp oils on the fatty acid composition of skin glycerophospholipids of patients with atopic dermatitis. J Nutr Biochem 11:338–340. doi:10.1016/s0955-2863(00)00088-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kamila Hurkova
    • 1
  • Josep Rubert
    • 1
  • Milena Stranska-Zachariasova
    • 1
  • Jana Hajslova
    • 1
  1. 1.Departement of Food Analysis and NutritionUniversity of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations