Food Analytical Methods

, Volume 10, Issue 1, pp 247–255 | Cite as

Application of Crystallization with Additives to Cloudy and Clear Apple Juice

  • Johannes KahlEmail author
  • Nicolaas Busscher
  • Paul Doesburg
  • Gaby Mergardt
  • Frank Will
  • Vera Schulzova
  • Jana Hajslova
  • Angelika Ploeger


The present study describes the effects of applying the new method crystallization with additives on cloudy and clear apple juice samples in two independent laboratories. The method has been successfully applied to grain and milk samples before. The samples presented here are characterized by means of standard analysis of apple juices and a metabolomic approach (DART-MS). The most evident difference between the two juices is the pectin concentration. Different amounts of sample and cupric chloride change the resulting patterns. The frequency of branching is clearly different between the patterns of the two samples. Based on structure analysis of the patterns, the two apple juice samples can be differentiated. The region of interest (ROI) has a stronger impact on the structure variables for cloudy than for clear apple juice. There is a significant difference between the treatments performed by both laboratories, independent of chamber and day and taking the different repetitions into account. The method principle is based on self-organization processes and not on single compound detection. Therefore, the results from crystallization with additives may complement the other measurement data for a wide range of different foods.


Crystallization with additives Fruit juice 


Compliance with Ethical Standards


This study was funded by Software AG-Stiftung, Darmstadt/Germany grant no. P-10986.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.


  1. Barth SW, Fähndrich C, Bub A, Dietrich H, Watzl B, Will F, Briviba K, Rechkemmer G (2005) Carcinogenesis 26:1414CrossRefGoogle Scholar
  2. Barth SW, Faehndrich C, Bub A, Watzl B, Will F, Dietrich H, Rechkemmer G, Briviba K (2007) J Agric Food Chem 55:1181CrossRefGoogle Scholar
  3. Busscher N, Kahl J, Andersen J-O, Huber M, Mergardt G, Doesburg P, Paulsen M, Ploeger A (2010a) Biol Agric Hortic 27:1CrossRefGoogle Scholar
  4. Busscher N, Kahl J, Doesburg P, Mergardt G, Ploeger A (2010b) J Colloid Interface Sci 344:556CrossRefGoogle Scholar
  5. Busscher N, Kahl J, Ploeger A (2014) J Sci Food Agric 94:2578CrossRefGoogle Scholar
  6. Candrawinata VI, Blades BL, Golding JB, Stathopoulos CE, Roach PD (2012) Int Food Res J 19:1055Google Scholar
  7. Doesburg P, Nierop AFM (2013) Comput Electron Agric 90:63CrossRefGoogle Scholar
  8. Gale F, Huang S, Gu Y (2010) Report FTS-344-01, (30.07.2015)
  9. Gallinet JP, Gauthier-Manuel B (1991) J Colloid Interface Sci 148:155CrossRefGoogle Scholar
  10. Kahl J, Busscher N, Doesburg P, Mergardt G, Huber M, Ploeger A (2009) Eur Food Res Technol 229:175CrossRefGoogle Scholar
  11. Kahl J, Busscher N, Mergardt G, Andersen JO, Doesburg P, Meelursarn A, Ploeger A (2014a) Food Anal Methods. doi: 10.1007/s12161-015-0142-6 Google Scholar
  12. Kahl J, Busscher N, Hoffmann W, Mergardt G, Clawin-Raedecker I, Kiesner C, Ploeger A (2014b) Food Anal Methods 7:1373CrossRefGoogle Scholar
  13. Kahl J, Alborzi F, Beck A, Bügel S, Busscher N, Geier U, Matt D, Meischner T, Paoletti F, Pehme S, Ploeger A, Rembiałkowska E, Schmid O, Strassner C, Taupier-Letage B, Załecka A (2014c) J Sci Food Agric 94:2582CrossRefGoogle Scholar
  14. Kahl J, Busscher N, Hoffmann W, Mergardt G, Clawin-Raedecker I, Ploeger A (2014d) Anal Methods 6:3173CrossRefGoogle Scholar
  15. Kahl J, Busscher N, Mergardt G, Mäder P, Torp T, Ploeger A (2015) J Sci Food Agric 95:53CrossRefGoogle Scholar
  16. Kokornaczyk MO, Dinelli G, Betti L (2013) Naturwissenschaften 100:111CrossRefGoogle Scholar
  17. Markowski J, Baron A, Mieszczakowska A, Plocharski W (2009) J Horti Sci Biotech ISAFRUIT Special Issue 68–74Google Scholar
  18. Meelursarn A (2007) PhD thesis, University of Witzenhausen (30.07.2015)
  19. Niu S, Xu Z, Fang Y, Zhang L, Yang Y, Liao X, Hu X (2010) Innovative Food Sci Emerg Technol 11:91CrossRefGoogle Scholar
  20. Ravn-Haren G, Dragsted LO, Buch-Andersen T, Jensen EN, Jensen RI, Nemeth-Balogh M, Paulovicsova B, Bergstrom A, Wilcks A, Licht TR, Markowski J, Bügel S (2012) Eur J Nutr 52:1875CrossRefGoogle Scholar
  21. Sahota A (2013) Global organic food & drink market. [Online]. Available: [03.08.2015]
  22. Seidel K, Kahl J, Paoletti F, Birlouez I, Busscher N, Kretzschmar U, Särkkä-Tirkkonen M, Seljasen R, Sinesio F, Torp T, Baiamonte I (2013) J Food Sci Technol 55:803Google Scholar
  23. Shibata T, Matsumotoa S, Kogureb M, Iguchic T, Tanakad A, Naganoa T, Ogawae T (2000) J Cryst Growth 219:423CrossRefGoogle Scholar
  24. Singleton VL, Rossi JA (1965) Am J Enol Vitic 37:144–158Google Scholar
  25. Szulc M, Kahl J, Busscher N, Mergardt G, Doesburg P, Ploeger A (2010) Comput Electron Agric 74:218CrossRefGoogle Scholar
  26. Vaclavik L, Schreiber A, Lacina O, Cajka T, Hajslova J (2012) Metabolomics 8(5):793–803CrossRefGoogle Scholar
  27. Vaillant F, Millan A, Dornier M, Decloux M, Reynes M (2001) J Food Eng 48:83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Johannes Kahl
    • 1
    • 2
    Email author
  • Nicolaas Busscher
    • 1
  • Paul Doesburg
    • 3
  • Gaby Mergardt
    • 1
  • Frank Will
    • 4
  • Vera Schulzova
    • 5
  • Jana Hajslova
    • 5
  • Angelika Ploeger
    • 1
  1. 1.University of KasselWitzenhausenGermany
  2. 2.Department of Nutrition, Exercise and SportsFrederiksbergDenmark
  3. 3.Crystal LabOttersumThe Netherlands
  4. 4.Institute of Wine Analysis and Beverage TechnologyHochschule Geisenheim UniversityGeisenheimGermany
  5. 5.Department of Food Analysis and NutritionInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations