Advertisement

Food Analytical Methods

, Volume 9, Issue 10, pp 2925–2932 | Cite as

Optimization and Application of a Slurry Sampling Method for the Determination of Total Fluorine in Flour Using a High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometer

Article

Abstract

A slurry sampling method was described for the determination of total fluorine in flour via molecular absorption of calcium monofluoride (CaF) at 660.440 nm using a high-resolution continuum source graphite furnace atomic absorption spectrometer (HR-CS GF AAS). The slurries were prepared in 1 % Triton X-100, kept in an ultrasonic bath for 15 min, mixed in a shaker for 5 min (750 rpm), and then vortexed for 30 s shortly before sampling. The samples were mixed with 40 μg of Ca in the graphite furnace, pyrolyzed at 900 °C, and the absorbances for CaF were measured at 2200 °C. The LOD and characteristic mass of the method were 0.22 and 0.16 ng, respectively. The F concentrations of certified reference bush branches and leaves were determined in the uncertainty limits of the certified values. Finally, the F concentrations of different types of flours were determined applying the optimized conditions.

Keywords

High-resolution continuum source graphite furnace atomic absorption spectrometer (HR-CS GF AAS) Molecular absorption spectrometry (MAS) Fluorine determination Calcium monofluoride (CaF) Flour Slurry sampling 

Notes

Compliance with Ethical Standards

Funding

This study was not funded by any agencies/institutes.

Conflict of Interest

Nil Ozbek declares that she has no conflict of interest.

Suleyman Akman declares that he has no conflict of interest.

Ethical Approval

For this type of study, formal consent is not required. This study does not contain any studies with human participants or animals performed by any of the authors.

Informed Constent

Not applicable.

References

  1. American Public Health Association (1995) Standard methods for the examination of water and wastewater. AWWA, WEF, Baltimore, MD, USAGoogle Scholar
  2. Baysal A, Tokman N, Akman S, Ozeroglu C (2008) Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry. J Hazard Mater 150:804–808. doi: 10.1016/j.jhazmat.2007.05.033 CrossRefGoogle Scholar
  3. Borges AR, Becker EM, Dessuy MB, Vale MGR, Welz B (2014a) Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling. Spectrochim Acta B At Spectrosc 92:1–8. doi: 10.1016/j.sab.2013.11.001 CrossRefGoogle Scholar
  4. Borges AR, Francois LL, Welz B, Carasek E, Vale MGR (2014b) Determination of fluorine in plant materials via calcium mono-fluoride using high-resolution graphite furnace molecular absorption spectrometry with direct solid sample introduction. J Anal At Spectrom 29:1564–1569. doi: 10.1039/C4ja00067f CrossRefGoogle Scholar
  5. Borges AR, Duarte ÁT, Potes ML, Silva MM, Vale MGR, Welz B (2016) Fluorine in eye shadow: development of method using high-resolution continuum source graphite furnace molecular absorption spectrometry via calcium mono-fluoride with direct solid sample introduction. Microchem J 124:410–415. doi: 10.1016/j.microc.2015.09.025 CrossRefGoogle Scholar
  6. Bücker S, Acker J (2012) Spectrometric analysis of process etching solutions of the photovoltaic industry—determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms. Talanta 94:335–341. doi: 10.1016/j.talanta.2012.03.052 CrossRefGoogle Scholar
  7. Butcher DJ (1993) Determination of fluorine, chlorine, and bromine by molecular absorption spectrometry. Microchem J 48:303–317. doi: 10.1006/mchj.1993.1104 CrossRefGoogle Scholar
  8. de Andrade CK, dos Anjos VE, Felsner ML, Torres YR, Quináia SP (2014) Direct determination of Cd, Pb and Cr in honey by slurry sampling electrothermal atomic absorption spectrometry. Food Chem 146:166–173. doi: 10.1016/j.foodchem.2013.09.065 CrossRefGoogle Scholar
  9. Dittrich K (1978) Molekülabsorptionsspektrometrie bei elektrothermischer verdampfung in einer graphitrohrküvette : I. Grundlagen der methode und untersuchungen über die molekülabsorption von Ga- und In-halogeniden Molecular absorption spectrometry by electrothermal volatilization in a graphite furnace. Part 1. Basis of the method and studies of the molecular absorption of gallium and indium halides. Anal Chim Acta 97:59–68. doi: 10.1016/S0003-2670(01)83275-X CrossRefGoogle Scholar
  10. Dittrich K, Vorberg B (1982) Molecular absorption spectrometry with electrothermal volatilization in a graphite tube.7. A study of molecular absorption of alkaline-earth halides and determination of traces of fluoride and chloride based on molecular absorption of Mgf and Mgcl molecules. Anal Chim Acta 140:237–248. doi: 10.1016/S0003-2670(01)95470-4 CrossRefGoogle Scholar
  11. Gleisner H, Welz B, Einax JW (2010) Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer. Spectrochim Acta B At Spectrosc 65:864–869. doi: 10.1016/j.sab.2010.08.003 CrossRefGoogle Scholar
  12. Gleisner H, Einax JW, Mores S, Welz B, Carasek E (2011) A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. J Pharm Biomed Anal 54:1040–1046. doi: 10.1016/j.jpba.2010.12.013 CrossRefGoogle Scholar
  13. Huang MD, Becker-Ross H, Okruss M, Geisler S, Florek S, Richter S, Meckelburg A (2014) Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry Spectrochimica Acta Part B:34–38Google Scholar
  14. Kissa E (1983) Determination of fluoride at low concentrations with the ion-selective electrode. Anal Chem 55:1445–1448. doi: 10.1021/ac00259a065 CrossRefGoogle Scholar
  15. Kruger M, Huang MD, Becker-Ross H, Florek S, Ott I, Gust R (2012) Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochim Acta B 69:50–55. doi: 10.1016/j.sab.2012.02.004 CrossRefGoogle Scholar
  16. Machado PM, Morés S, Pereira ÉR, Welz B, Carasek E, de Andrade JB (2015) Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochim Acta B At Spectrosc 105:18–24. doi: 10.1016/j.sab.2014.08.001 CrossRefGoogle Scholar
  17. Marthaler TM (1992) Age-adjusted limits of fluoride intake to minimize the prevalence of fluorosis. J Biol Buccale 20:121–127Google Scholar
  18. Mores S, Monteiro GC, Santos FD, Carasek E, Welz B (2011) Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF. Talanta 85:2681–2685. doi: 10.1016/j.talanta.2011.08.044 CrossRefGoogle Scholar
  19. Nakadi FV, Rosa LR, da Veiga MAMS (2013) Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry. Spectrochim Acta B 88:80–84. doi: 10.1016/j.sab.2013.04.011 CrossRefGoogle Scholar
  20. Ozbek N, Akman S (2012a) Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer. Spectrochim Acta B At Spectrosc 69:32–37. doi: 10.1016/j.sab.2012.03.003 CrossRefGoogle Scholar
  21. Ozbek N, Akman S (2012b) A slurry sampling method for the determination of iron and zinc in baby food by flame atomic absorption spectrometry. Food Addit Contam A 29:208–216. doi: 10.1080/19440049.2011.631193 CrossRefGoogle Scholar
  22. Ozbek N, Akman S (2013) Molecule formation mechanisms of strontium mono fluoride in high-resolution continuum source electrothermal atomic absorption spectromerty. Anal Sci 29:741–746CrossRefGoogle Scholar
  23. Ozbek N, Akman S (2014) Determination of fluorine in milk and water via molecular absorption of barium monofluoride by high-resolution continuum source atomic absorption spectrometer. Microchem J 117:111–115. doi: 10.1016/j.microc.2014.06.013 CrossRefGoogle Scholar
  24. Ozbek N, Akman S (2015) Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer LWT. Food Sci Technol 61:112–116Google Scholar
  25. Soares AR, Nascentes CC (2013) Method for determination of lead in hair dyes using slurry sampling graphite furnace atomic absorption spectrometry. Anal Lett 46:356–366. doi: 10.1080/00032719.2012.710868 CrossRefGoogle Scholar
  26. Tsunoda K, Chiba K, Haraguchi H, Fuwa K (1979) Platinum atomic lines for determination of ultratrace fluoride by aluminum monofluoride molecular absorption spectrometry. Anal Chem 51:2059–2061. doi: 10.1021/ac50048a044 CrossRefGoogle Scholar
  27. Umile C, Huber JFK (1993) Determination of inorganic and organic anions in one run by ion chromatography with column switching. J Chromatogr A 640:27–31. doi: 10.1016/0021-9673(93)80164-4 CrossRefGoogle Scholar
  28. USA Public Service Department of Health and Human Services (1991) Revıew of fluorıde: benefıts and rısks. publıc health servıce department of health and human servıces, USAGoogle Scholar
  29. Vignola F, Borges DLG, Curtius AJ, Welz B, Becker-Ross H (2010) Simultaneous determination of Cd and Fe in sewage sludge by high-resolution continuum source electrothermal atomic absorption spectrometry with slurry sampling. Microchem J 95:333–336. doi: 10.1016/j.microc.2010.01.014 CrossRefGoogle Scholar
  30. Wang P, Li SFY, Lee HK (1997) Simultaneous determination of monofluorophosphate and fluoride in toothpaste by capillary electrophoresis. J Chromatogr A 765:353–359. doi: 10.1016/S0021-9673(96)00926-0 CrossRefGoogle Scholar
  31. Welz B, Lepri FG, Araujo RGO, Ferreira SLC, Huang MD, Okruss M, Becker-Ross H (2009) Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces—a review. Analytica Chimica Acta 647:137–148. doi: 10.1016/j.aca.2009.06.029 CrossRefGoogle Scholar
  32. Ye P, Guo W, Zhang P, Jin L (2015) Heat-assisted slurry sampling GFAAS method for determination of lead in food standard reference materials. J Food Compos Anal 42:78–83. doi: 10.1016/j.jfca.2015.03.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Science and Letters, Chemistry DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations