Advertisement

Food Analytical Methods

, Volume 9, Issue 8, pp 2261–2269 | Cite as

Determination of Polyphenol Content by Formation of Unstable Compound Using a Mini-Pump Multicommutation System

  • Suelle G. F. de Assis
  • Marcelo F. de Andrade
  • Maria Conceição B. S. M. Montenegro
  • Boaventura F. dos Reis
  • Ana Paula S. PaimEmail author
Article

Abstract

This article describes a multicommuted flow procedure for photometric determination of the polyphenol content in wines and teas, exploiting the formation of unstable intermediate products, by the reaction of sodium hypochloride with gallic acid. Because the lifetime of the formed compound is very short, a special flow cell was designed in order to enable mixing of sample and reagent solution within the flow cell, thus allowing signal monitoring, while compound formation proceeded. The flow system manifold comprised three solenoid mini-pumps to propel sample, reagent solution, and carrier fluid. The photometer consisted of a photodiode and a light emitting diode (LED) with maximum emission at 490 nm. Under the selected operational conditions, useful features including a linear response ranging from 62 to 1000 mg L−1 gallic acid solution (R = 0.9987), a detection limit of 21 mg L−1 gallic acid, a sampling rate of 120 determinations per hour, a relative standard deviation of 1.9 % (n = 20) for a typical solution containing 400 mg L−1 gallic acid, and a waste generation of 1.0 mL per determination were also achieved. Medium recovery values of 96.2 ± 10.4 and 101.9 ± 7.3 % for wines and teas, respectively, were achieved.

Keywords

Multicommuted flow analysis Gallic acid Wine Tea LED-based photometer 

Notes

Acknowledgments

The authors acknowledge the financial support from Programa CAPES/Pesquisador Visitante Especial - Projeto 093/2012, CNPq and FACEPE. The English text has been revised by Sidney Pratt, Canadian, MAT (The Johns Hopkins University), RSAdip-TEFL (University of Cambridge).

Compliance with Ethical Standards

Conflict of Interest

Suelle Gisian Farias de Assis declares that she has no conflict of interest. Marcelo Farias de Andrade declares that he has no conflict of interest. Ana Paula Silveira Paim declares that she has no conflict of interest. Boaventura Freire dos Reis declares that he has no conflict of interest. Maria Conceição B. S. M. Montenegro declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Alén-Ruiz F, García-Falcón MS, Pérez-Lamela MC, Martínez-Carballo E, Simal-Gándara J (2009) Food Chem 113:53–60. doi: 10.1016/j.foodchem.2008.07.038 CrossRefGoogle Scholar
  2. Analytical Methods Committee (1987) Analyst 112:199–204CrossRefGoogle Scholar
  3. Andrade MF, Assis SGF, Paim APS, Reis BF (2014) Food Anal Methods 7:967–976. doi: 10.1007/s12161-013-9699-0 CrossRefGoogle Scholar
  4. APHA (1998) Standard methods for the examination of water and wastewater, 20 th ed. American Public Health Association, American Water Works Association, Water Environmental Federation, WashingtonGoogle Scholar
  5. Araujo ARTS, Maya F, Saraiva MLMFS, Lima JLFC, Estela JM, Cerdá V (2011) Luminescence 26:571–578. doi: 10.1002/bio.1272 CrossRefGoogle Scholar
  6. Argemí A, Saurina J (2007) J Pharm Biomed Anal 44:859–866. doi: 10.1016/j.jpba.2007.03.028 CrossRefGoogle Scholar
  7. Berker KI, Olgun FAO, Ozyurt D, Demirata B, Apak R (2013) J Agric Food Chem 61:4783–4791CrossRefGoogle Scholar
  8. Boqué R, Maroto A, Riu J, Rius FX (2002) Grasas Aceites 53:128–143Google Scholar
  9. Chawla S, Rawal R, Kumar D, Pundir CS (2012) Anal Biochem 430:16–23. doi: 10.1016/j.ab.2012.07.025 CrossRefGoogle Scholar
  10. Crispino CC, Reis BF (2014) Anal Methods 302–307. doi:  10.1039/c3ay40382c
  11. European Commission Health and Consumer protection Directorate-General (2013) SANCO/12571/2013. http://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2013_12571.pdf. Accessed 14 October 2015
  12. Fan J, Wang A, Feng S, Wang J (2005) Talanta 66:236–243. doi: 10.1016/j.talanta.2004.11.020 CrossRefGoogle Scholar
  13. Fassoula E, Economou A, Calokerinos A (2011) Talanta 85:1412–1418. doi: 10.1016/j.talanta.2011.06.037 CrossRefGoogle Scholar
  14. Flamini R (2003) Mass Spectrom Rev 22:218–250. doi: 10.1002/mas.10052 CrossRefGoogle Scholar
  15. Freitas SKB, Silva VL, Araújo AN, Montenegro MCBSM, Reis BF, Paim APS (2011) J Braz Chem Soc 22:279–285CrossRefGoogle Scholar
  16. Giokas DL, Christodouleas DC, Vlachou I, Vlessidis AG, Calokerinos AC (2013) Development of a generic assay for the determination of total trihydroxybenzoate derivatives based on gold-luminol chemiluminescence. Anal Chim Acta 764:70–77. doi: 10.1016/j.aca.2012.12.025
  17. Guillarme D, Casetta C, Bicchi C, Veuthey J-L (2010) J Chromatogr A 1217:6882–6890. doi: 10.1016/j.chroma.2010.08.060 CrossRefGoogle Scholar
  18. Kanwal S, Fu X, Su, X (2009) Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds. Spectrochim Acta A 74:1046–1049. doi: 10.1016/j.saa.2009.08.047
  19. Karak T, Bhagat RM (2010) Food Res Int 43:2234–2252. doi: 10.1016/j.foodres.2010.08.010 CrossRefGoogle Scholar
  20. Kevin R, Antolovich M (1997) Analyst 122:11–34CrossRefGoogle Scholar
  21. Kment P, Mihaljevič M, Ettler V, Sebek O, Strnad L, Rohlova L (2005) Food Chem 91:157–165. doi: 10.1016/j.foodchem.2004.06.010 CrossRefGoogle Scholar
  22. Li Z, Ma H, Lu H, Tao G (2008) Talanta 74:788–792. doi: 10.1016/j.talanta.2007.07.011 CrossRefGoogle Scholar
  23. Ma H, Liu J (1992) Anal Chim Acta 261:247–252CrossRefGoogle Scholar
  24. Mannino S, Brenna O, Buratti S, Cosio MS (1998) Electroanalysis 10:908–912. doi: 10.1002/(SICI)1521-4109(199810)10:13<908::AID-ELAN908>3.0.CO;2-L CrossRefGoogle Scholar
  25. Melchert WR, Reis BF, Rocha FRP (2012) Anal Chim Acta 714:8–19. doi: 10.1016/j.aca.2011.11.044 CrossRefGoogle Scholar
  26. Nalewajko-Sieliwoniuk E, Tarasewicz I, Kojło A (2010) Anal Chim Acta 668:19–25. doi: 10.1016/j.aca.2010.01.031 CrossRefGoogle Scholar
  27. Olivier J, Symington EA, Jonker CZ, Rampedi IT, van Eeden TS (2012) S Afr J Sci 108:1–7. doi: 10.4102/sajs.v108i1/2.623 CrossRefGoogle Scholar
  28. Pandey KB, Rizvi SI (2009) Oxid Med Cell Longev 2:270–278. doi: 10.4161/oxim.2.5.9498 CrossRefGoogle Scholar
  29. Pereira AC, Rocha FRP (2014) Anal Chim Acta 829:28–32. doi: 10.1016/j.aca.2014.04.049 CrossRefGoogle Scholar
  30. Porgalı E, Büyüktuncel E (2012) Food Res Int 45:145–154. doi: 10.1016/j.foodres.2011.10.025 CrossRefGoogle Scholar
  31. Reis BF, Gine MF, Zagatto EAG, Lima JLFC, Lapa RA (1994) Anal Chim Acta 1–2:129–138CrossRefGoogle Scholar
  32. Ríos A, Castro MDL, Valcarcel M (1985) Anal Chim Acta 171:303–312CrossRefGoogle Scholar
  33. Rodriguez-Delgado MA, Malovana S, Pérez JP, Borges T, Montelongo FJG (2001) J Chromatogr A 912:249–257CrossRefGoogle Scholar
  34. Šeruga M, Novak I, Jakobek L (2011) Food Chem 124:1208–1216. doi: 10.1016/j.foodchem.2010.07.047 CrossRefGoogle Scholar
  35. Suarez WT, Vieira HJ, Fatibello-Filho O (2005) J Pharm Biomed Anal 37:771–775. doi: 10.1016/j.jpba.2004.11.032 CrossRefGoogle Scholar
  36. Tucker G, Robards K (2008) Crit Rev Food Sci Nutr 48:929–966. doi: 10.1080/10408390701761977 CrossRefGoogle Scholar
  37. Vieira GP, Perdigão SRW, Fiore MF, Reis BF (2012) D Sensors Actuators B Chem 161:422–428. doi: 10.1016/j.snb.2011.10.054 CrossRefGoogle Scholar
  38. Welna M, Szymczycha-Madeja A, Pohl P (2013) Food Res Int 53:922–930. doi: 10.1016/j.foodres.2013.03.030 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Suelle G. F. de Assis
    • 1
  • Marcelo F. de Andrade
    • 1
  • Maria Conceição B. S. M. Montenegro
    • 2
  • Boaventura F. dos Reis
    • 3
  • Ana Paula S. Paim
    • 1
    Email author
  1. 1.Departamento de Química Fundamental - Centro de Ciências Exatas e da NaturezaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  3. 3.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil

Personalised recommendations