Food Analytical Methods

, Volume 9, Issue 5, pp 1301–1306 | Cite as

The Potential of Raman Spectroscopy for the Classification of Fish Fillets

  • Božidar RaškovićEmail author
  • Ralf Heinke
  • Petra Rösch
  • Jürgen Popp


Since fishery products represent an important and globally growing food resource, there is also an increased incidence rate of intentional mislabelling of fish products and restaurant frauds globally. In the present study, Raman spectroscopy, as a fast and non-invasive technique, was applied using a laser at a wavelength of 532 nm for the classification of deep frozen fish fillets. Without any preparation, muscle tissue of 12 fish types was analysed with a Raman device, and according to a hierarchical cluster analysis of their spectra, three groups were identified: (1) the carotenoid group, fish from salmonid family; (2) the freshwater group, fish that was reared in fresh or brackish water; and (3) the saltwater group, fish reared in saltwater. Thus, it is demonstrated that Raman spectroscopy can be used as a direct, non-expensive and fast screening method before proceeding with standard methods for the identification of fish fillets.


Raman spectroscopy Fish Meat Environment Carotenoids 



We thank Stephan Stöckel for critical reading of the manuscript.


This study was supported by the FP7 Project AREA (Project number: 316004). Ralf Heinke, Petra Rösch and Jürgen Popp thank the EU, the Thüringer Kultusministerium, the Thüringer Aufbaubank, the Federal Ministry of Education and Research, Germany (BMBF), the German Science Foundation (DFG) and the Carl-Zeiss Foundation for financial supports.

Conflict of Interest

Božidar Rašković declares that he has no conflict of interest. Ralf Heinke declares that he has no conflict of interest. Petra Rösch declares that she has no conflict of interest. Jürgen Popp declares that he has no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.


  1. Afseth NK, Wold JP, Segtnan VH (2006) The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal Chim Acta 572:85–92. doi: 10.1016/j.aca.2006.05.013 CrossRefGoogle Scholar
  2. Alfnes F, Guttormsen AG, Steine G, Kolstad K (2006) Consumers’ willingness to pay for the color of salmon: a choice experiment with real economic incentives. Am J Agric Econ 88:1050–1061. doi: 10.1111/j.1467-8276.2006.00915.x CrossRefGoogle Scholar
  3. Asensio L, Samaniego L (2009) Rapid identification of grouper and wreck fish meals by ELISA: a field study in restaurants. Int J Food Sci Technol 44:1585–1589. doi: 10.1111/j.1365-2621.2008.01857.x CrossRefGoogle Scholar
  4. Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models? Anal Chim Acta 704:47–56. doi: 10.1016/j.aca.2011.06.043 CrossRefGoogle Scholar
  5. Careche M, Herrero AM, Rodriguez-Casado A, Del Mazo ML, Carmona P (1999) Structural changes of hake (Merluccius merluccius L.) fillets: effects of freezing and frozen storage. J Agric Food Chem 47:952–959. doi: 10.1021/jf9809481 CrossRefGoogle Scholar
  6. Carpenè E, Veggetti A, Mascarello F (1982) Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J Fish Biol 20:379–396. doi: 10.1111/j.1095-8649.1982.tb03932.x CrossRefGoogle Scholar
  7. Cerig E (2002) Improved grow-out of European sea bass (Dicentrarchus labrax L., 1781). Turk J Fish Aquat Sci 2:71–75Google Scholar
  8. Damez J-L, Clerjon S (2008) Meat quality assessment using biophysical methods related to meat structure. Meat Sci 80:132–149. doi: 10.1016/j.meatsci.2008.05.039 CrossRefGoogle Scholar
  9. Development Core Team R (2008) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  10. Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J (2011) Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem 225:753–764. doi: 10.1524/zpch.2011.0077 CrossRefGoogle Scholar
  11. Ellis DI, Broadhurst D, Clarke SJ, Goodacre R (2005) Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst 130:1648–1654. doi: 10.1039/b511484e CrossRefGoogle Scholar
  12. FAO (2014) The state of world fisheries and aquaculture. FAO, RomeGoogle Scholar
  13. Hatlen B, Jobling M, Bjerkeng B (1998) Relationships between carotenoid concentration and colour of fillets of Arctic chair, Salvelinus alpinus (L.), fed astaxanthin. Aquac Res 29:191–202. doi: 10.1046/j.1365-2109.1998.00956.x CrossRefGoogle Scholar
  14. Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theory Chem Account 130:1249–1260. doi: 10.1007/s00214-011-0957-1 CrossRefGoogle Scholar
  15. Herrero AM (2008a) Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 107:1642–1651. doi: 10.1016/j.foodchem.2007.10.014 CrossRefGoogle Scholar
  16. Herrero AM (2008b) Raman spectroscopy for monitoring protein structure in muscle food systems. Crit Rev Food Sci Nutr 48:512–523. doi: 10.1080/10408390701537385 CrossRefGoogle Scholar
  17. Herrero AM, Carmona P, Careche M (2004) Raman spectroscopic study of structural changes in hake (Merluccius merluccius L.) muscle proteins during frozen storage. J Agric Food Chem 52:2147–2153. doi: 10.1021/jf034301e CrossRefGoogle Scholar
  18. Herrero AM, Carmona P, Ordóñez JA, Ldl H, Cambero MI (2009) Raman spectroscopic study of electron-beam irradiated cold-smoked salmon. Food Res Int 42:216–220. doi: 10.1016/j.foodres.2008.10.010 CrossRefGoogle Scholar
  19. Hu B, Ferrell M, Lim CE, Davis DA (2012) Evaluation of traditional diet and corn gluten feed substituted alternative diet for pond-raised hybrid catfish on production and xanthophyll level. Aquaculture 354–355:22–26. doi: 10.1016/j.aquaculture.2012.04.038 CrossRefGoogle Scholar
  20. Huggins AK, Colley L (1971) The changes in the non-protein nitrogenous constituents of muscle during the adaptation of the eel Anguilla anguilla L. from fresh water to sea water. Comp Biochem Phys 38:537–541. doi: 10.1016/0305-0491(71)90310-5 Google Scholar
  21. Jacquet JL, Pauly D (2008) Trade secrets: renaming and mislabeling of seafood. Mar Pol 32:309–318. doi: 10.1016/j.marpol.2007.06.007 CrossRefGoogle Scholar
  22. Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264. doi: 10.1242/jeb.02153 CrossRefGoogle Scholar
  23. Kawai T, Sakaguchi M (1996) Fish flavor. Crit Rev Food Sci Nutr 36:257–298. doi: 10.1080/10408399609527725 CrossRefGoogle Scholar
  24. Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. BBA Mol Basis Dis 1688:176–186. doi: 10.1016/j.bbadis.2003.12.006 CrossRefGoogle Scholar
  25. Li G, Sinclair AJ, Li D (2011) Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. J Agric Food Chem 59:1871–1881. doi: 10.1021/jf104154q CrossRefGoogle Scholar
  26. Marcos R, Monteiro RAF, Rocha E (2012) The use of design-based stereology to evaluate volumes and numbers in the liver: a review with practical guidelines. J Anat 220:303–317. doi: 10.1111/j.1469-7580.2012.01475.x CrossRefGoogle Scholar
  27. Marquardt BJ, Wold JP (2004) Raman analysis of fish: a potential method for rapid quality screening. LWT Food Sci Technol 37:1–8. doi: 10.1016/S0023-6438(03)00114-2 CrossRefGoogle Scholar
  28. Miller D, Jessel A, Mariani S (2012) Seafood mislabelling: comparisons of two western European case studies assist in defining influencing factors, mechanisms and motives. Fish Fish 13:345–358. doi: 10.1111/j.1467-2979.2011.00426.x CrossRefGoogle Scholar
  29. Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S (1999) Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47:3309–3318. doi: 10.1021/jf9813079 CrossRefGoogle Scholar
  30. Papadopoulos LS, Finne G (1986) Effect of environmental salinity on sensory characteristics of penaeid shrimp. J Food Sci 51:812–814. doi: 10.1111/j.1365-2621.1986.tb13938.x CrossRefGoogle Scholar
  31. Rasmussen RS, Morrissey MT (2008) DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food 7:280–295. doi: 10.1111/j.1541-4337.2008.00046.x CrossRefGoogle Scholar
  32. Rehbein H (2008) New fish on the German market: consumer protection against fraud by identification of species. J Verbr Lebensm 3:49–53. doi: 10.1007/s00003-007-0301-9 CrossRefGoogle Scholar
  33. Schmidt H, Sowoidnich K, Kronfeldt H-D (2010) A prototype hand-held Raman sensor for the in situ characterization of meat quality. Appl Spectrosc 64:888–894CrossRefGoogle Scholar
  34. Tolasa S, Cakli S, Ostermeyer U (2005) Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol 221:787–79.1. doi: 10.1007/s00217-005-0071-5 CrossRefGoogle Scholar
  35. Tveterås S, Asche F, Bellemare MF, Smith MD, Guttormsen AG, Lem A, Lien K, Vannuccini S (2012) Fish is food—the FAO’s fish price index. PLoS One 7:e36731. doi: 10.1371/journal.pone.0036731 CrossRefGoogle Scholar
  36. Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12:175–197. doi: 10.1080/87559129609541074 CrossRefGoogle Scholar
  37. Warner K, Timme W, Lowell B, Hirshfield M (2013) Oceana study reveals seafood fraud nationwide.
  38. Wold JP, Marquardt BJ, Dable BK, Robb D, Hatlen B (2004) Rapid quantification of carotenoids and fat in Atlantic salmon (Salmo salar L.) by Raman spectroscopy and chemometrics. Appl Spectrosc 58:395–403CrossRefGoogle Scholar
  39. Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837. doi: 10.1016/j.foodres.2008.07.005 CrossRefGoogle Scholar
  40. Xu X-L, Han M-Y, Fei Y, Zhou G-H (2011) Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci 87:159–164. doi: 10.1016/j.meatsci.2010.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Božidar Rašković
    • 1
    Email author
  • Ralf Heinke
    • 2
  • Petra Rösch
    • 2
  • Jürgen Popp
    • 2
    • 3
    • 4
  1. 1.University of Belgrade, Faculty of AgricultureBelgrade-ZemunSerbia
  2. 2.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  3. 3.Infectognostics, Forschungscampus JenaJenaGermany
  4. 4.Leibniz Institute of Photonic Technology e. V.JenaGermany

Personalised recommendations